Do you want to publish a course? Click here

Real-Time and Accurate Object Detection in Compressed Video by Long Short-term Feature Aggregation

102   0   0.0 ( 0 )
 Added by Xinggang Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Video object detection is a fundamental problem in computer vision and has a wide spectrum of applications. Based on deep networks, video object detection is actively studied for pushing the limits of detection speed and accuracy. To reduce the computation cost, we sparsely sample key frames in video and treat the rest frames are non-key frames; a large and deep network is used to extract features for key frames and a tiny network is used for non-key frames. To enhance the features of non-key frames, we propose a novel short-term feature aggregation method to propagate the rich information in key frame features to non-key frame features in a fast way. The fast feature aggregation is enabled by the freely available motion cues in compressed videos. Further, key frame features are also aggregated based on optical flow. The propagated deep features are then integrated with the directly extracted features for object detection. The feature extraction and feature integration parameters are optimized in an end-to-end manner. The proposed video object detection network is evaluated on the large-scale ImageNet VID benchmark and achieves 77.2% mAP, which is on-par with state-of-the-art accuracy, at the speed of 30 FPS using a Titan X GPU. The source codes are available at url{https://github.com/hustvl/LSFA}.



rate research

Read More

Object detection has been vigorously investigated for years but fast accurate detection for real-world scenes remains a very challenging problem. Overcoming drawbacks of single-stage detectors, we take aim at precisely detecting objects for static and temporal scenes in real time. Firstly, as a dual refinement mechanism, a novel anchor-offset detection is designed, which includes an anchor refinement, a feature location refinement, and a deformable detection head. This new detection mode is able to simultaneously perform two-step regression and capture accurate object features. Based on the anchor-offset detection, a dual refinement network (DRNet) is developed for high-performance static detection, where a multi-deformable head is further designed to leverage contextual information for describing objects. As for temporal detection in videos, temporal refinement networks (TRNet) and temporal dual refinement networks (TDRNet) are developed by propagating the refinement information across time. We also propose a soft refinement strategy to temporally match object motion with the previous refinement. Our proposed methods are evaluated on PASCAL VOC, COCO, and ImageNet VID datasets. Extensive comparisons on static and temporal detection verify the superiority of DRNet, TRNet, and TDRNet. Consequently, our developed approaches run in a fairly fast speed, and in the meantime achieve a significantly enhanced detection accuracy, i.e., 84.4% mAP on VOC 2007, 83.6% mAP on VOC 2012, 69.4% mAP on VID 2017, and 42.4% AP on COCO. Ultimately, producing encouraging results, our methods are applied to online underwater object detection and grasping with an autonomous system. Codes are publicly available at https://github.com/SeanChenxy/TDRN.
Object detection in videos has drawn increasing attention since it is more practical in real scenarios. Most of the deep learning methods use CNNs to process each decoded frame in a video stream individually. However, the free of charge yet valuable motion information already embedded in the video compression format is usually overlooked. In this paper, we propose a fast object detection method by taking advantage of this with a novel Motion aided Memory Network (MMNet). The MMNet has two major advantages: 1) It significantly accelerates the procedure of feature extraction for compressed videos. It only need to run a complete recognition network for I-frames, i.e. a few reference frames in a video, and it produces the features for the following P frames (predictive frames) with a light weight memory network, which runs fast; 2) Unlike existing methods that establish an additional network to model motion of frames, we take full advantage of both motion vectors and residual errors that are freely available in video streams. To our best knowledge, the MMNet is the first work that investigates a deep convolutional detector on compressed videos. Our method is evaluated on the large-scale ImageNet VID dataset, and the results show that it is 3x times faster than single image detector R-FCN and 10x times faster than high-performance detector MANet at a minor accuracy loss.
Deep learning-based methods have achieved promising results on surgical instrument segmentation. However, the high computation cost may limit the application of deep models to time-sensitive tasks such as online surgical video analysis for robotic-assisted surgery. Moreover, current methods may still suffer from challenging conditions in surgical images such as various lighting conditions and the presence of blood. We propose a novel Multi-frame Feature Aggregation (MFFA) module to aggregate video frame features temporally and spatially in a recurrent mode. By distributing the computation load of deep feature extraction over sequential frames, we can use a lightweight encoder to reduce the computation costs at each time step. Moreover, public surgical videos usually are not labeled frame by frame, so we develop a method that can randomly synthesize a surgical frame sequence from a single labeled frame to assist network training. We demonstrate that our approach achieves superior performance to corresponding deeper segmentation models on two public surgery datasets.
To understand the world, we humans constantly need to relate the present to the past, and put events in context. In this paper, we enable existing video models to do the same. We propose a long-term feature bank---supportive information extracted over the entire span of a video---to augment state-of-the-art video models that otherwise would only view short clips of 2-5 seconds. Our experiments demonstrate that augmenting 3D convolutional networks with a long-term feature bank yields state-of-the-art results on three challenging video datasets: AVA, EPIC-Kitchens, and Charades.
Video objection detection (VID) has been a rising research direction in recent years. A central issue of VID is the appearance degradation of video frames caused by fast motion. This problem is essentially ill-posed for a single frame. Therefore, aggregating features from other frames becomes a natural choice. Existing methods rely heavily on optical flow or recurrent neural networks for feature aggregation. However, these methods emphasize more on the temporally nearby frames. In this work, we argue that aggregating features in the full-sequence level will lead to more discriminative and robust features for video object detection. To achieve this goal, we devise a novel Sequence Level Semantics Aggregation (SELSA) module. We further demonstrate the close relationship between the proposed method and the classic spectral clustering method, providing a novel view for understanding the VID problem. We test the proposed method on the ImageNet VID and the EPIC KITCHENS dataset and achieve new state-of-the-art results. Our method does not need complicated postprocessing methods such as Seq-NMS or Tubelet rescoring, which keeps the pipeline simple and clean.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا