Topologically non-trivial spin textures, such as skyrmions and dislocations, display emergent electrodynamics and can be moved by spin currents over macroscopic distances. These unique properties and their nanoscale size make them excellent candidates for the development of next-generation logic gates, race-track memory, and artificial synapses for neuromorphic computing. A major challenge for these applications - and the investigation of nanoscale magnetic structures in general - is the realization of detection schemes that provide high resolution and sensitivity. We study the local magnetic properties of disclinations, dislocations, and domain walls in FeGe, and reveal a pronounced response that distinguishes the individual spin textures from the helimagnetic background. Combination of magnetic force microscopy and micromagnetic simulations links the non-linear response to the local magnetic susceptibility. Based on the findings, we propose a read-out scheme using superconducting micro-coils, representing an innovative approach for detecting topologically non-trivial spin textures and domain walls in device-relevant geometries.