Do you want to publish a course? Click here

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation

141   0   0.0 ( 0 )
 Added by Wenhao Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite great progress in 3D human pose estimation from videos, it is still an open problem to take full advantage of redundant 2D pose sequences to learn representative representation for generating one single 3D pose. To this end, we propose an improved Transformer-based architecture, called Strided Transformer, for 3D human pose estimation in videos to lift a sequence of 2D joint locations to a 3D pose. Specifically, a vanilla Transformer encoder (VTE) is adopted to model long-range dependencies of 2D pose sequences. To reduce redundancy of the sequence and aggregate information from local context, strided convolutions are incorporated into VTE to progressively reduce the sequence length. The modified VTE is termed as strided Transformer encoder (STE) which is built upon the outputs of VTE. STE not only effectively aggregates long-range information to a single-vector representation in a hierarchical global and local fashion but also significantly reduces the computation cost. Furthermore, a full-to-single supervision scheme is designed at both the full sequence scale and single target frame scale, applied to the outputs of VTE and STE, respectively. This scheme imposes extra temporal smoothness constraints in conjunction with the single target frame supervision and improves the representation ability of features for the target frame. The proposed architecture is evaluated on two challenging benchmark datasets, Human3.6M and HumanEva-I, and achieves state-of-the-art results with much fewer parameters.



rate research

Read More

Transformer architectures have become the model of choice in natural language processing and are now being introduced into computer vision tasks such as image classification, object detection, and semantic segmentation. However, in the field of human pose estimation, convolutional architectures still remain dominant. In this work, we present PoseFormer, a purely transformer-based approach for 3D human pose estimation in videos without convolutional architectures involved. Inspired by recent developments in vision transformers, we design a spatial-temporal transformer structure to comprehensively model the human joint relations within each frame as well as the temporal correlations across frames, then output an accurate 3D human pose of the center frame. We quantitatively and qualitatively evaluate our method on two popular and standard benchmark datasets: Human3.6M and MPI-INF-3DHP. Extensive experiments show that PoseFormer achieves state-of-the-art performance on both datasets. Code is available at url{https://github.com/zczcwh/PoseFormer}
73 - Miao Hao , Yizhuo Li , Zonglin Di 2021
We propose to personalize a human pose estimator given a set of test images of a person without using any manual annotations. While there is a significant advancement in human pose estimation, it is still very challenging for a model to generalize to different unknown environments and unseen persons. Instead of using a fixed model for every test case, we adapt our pose estimator during test time to exploit person-specific information. We first train our model on diverse data with both a supervised and a self-supervised pose estimation objectives jointly. We use a Transformer model to build a transformation between the self-supervised keypoints and the supervised keypoints. During test time, we personalize and adapt our model by fine-tuning with the self-supervised objective. The pose is then improved by transforming the updated self-supervised keypoints. We experiment with multiple datasets and show significant improvements on pose estimations with our self-supervised personalization.
In this paper, we propose a novel 3D human pose estimation algorithm from a single image based on neural networks. We adopted the structure of the relational networks in order to capture the relations among different body parts. In our method, each pair of different body parts generates features, and the average of the features from all the pairs are used for 3D pose estimation. In addition, we propose a dropout method that can be used in relational modules, which inherently imposes robustness to the occlusions. The proposed network achieves state-of-the-art performance for 3D pose estimation in Human 3.6M dataset, and it effectively produces plausible results even in the existence of missing joints.
In this work, we propose a new solution to 3D human pose estimation in videos. Instead of directly regressing the 3D joint locations, we draw inspiration from the human skeleton anatomy and decompose the task into bone direction prediction and bone length prediction, from which the 3D joint locations can be completely derived. Our motivation is the fact that the bone lengths of a human skeleton remain consistent across time. This promotes us to develop effective techniques to utilize global information across all the frames in a video for high-accuracy bone length prediction. Moreover, for the bone direction prediction network, we propose a fully-convolutional propagating architecture with long skip connections. Essentially, it predicts the directions of different bones hierarchically without using any time-consuming memory units e.g. LSTM). A novel joint shift loss is further introduced to bridge the training of the bone length and bone direction prediction networks. Finally, we employ an implicit attention mechanism to feed the 2D keypoint visibility scores into the model as extra guidance, which significantly mitigates the depth ambiguity in many challenging poses. Our full model outperforms the previous best results on Human3.6M and MPI-INF-3DHP datasets, where comprehensive evaluation validates the effectiveness of our model.
We present an approach to recover absolute 3D human poses from multi-view images by incorporating multi-view geometric priors in our model. It consists of two separate steps: (1) estimating the 2D poses in multi-view images and (2) recovering the 3D poses from the multi-view 2D poses. First, we introduce a cross-view fusion scheme into CNN to jointly estimate 2D poses for multiple views. Consequently, the 2D pose estimation for each view already benefits from other views. Second, we present a recursive Pictorial Structure Model to recover the 3D pose from the multi-view 2D poses. It gradually improves the accuracy of 3D pose with affordable computational cost. We test our method on two public datasets H36M and Total Capture. The Mean Per Joint Position Errors on the two datasets are 26mm and 29mm, which outperforms the state-of-the-arts remarkably (26mm vs 52mm, 29mm vs 35mm). Our code is released at url{https://github.com/microsoft/multiview-human-pose-estimation-pytorch}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا