Do you want to publish a course? Click here

HUGE: An Efficient and Scalable Subgraph Enumeration System

85   0   0.0 ( 0 )
 Added by Zhengyi Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Subgraph enumeration is a fundamental problem in graph analytics, which aims to find all instances of a given query graph on a large data graph. In this paper, we propose a system called HUGE to efficiently process subgraph enumeration at scale in the distributed context. HUGE features 1) an optimiser to compute an advanced execution plan without the constraints of existing works; 2) a hybrid communication layer that supports both pushing and pulling communication; 3) a novel two-stage execution mode with a lock-free and zero-copy cache design, 4) a BFS/DFS-adaptive scheduler to bound memory consumption, and 5) two-layer intra- and inter-machine load balancing. HUGE is generic such that all existing distributed subgraph enumeration algorithms can be plugged in to enjoy automatic speed up and bounded-memory execution.



rate research

Read More

132 - Ye Yuan , Guoren Wang , Lei Chen 2012
Many studies have been conducted on seeking the efficient solution for subgraph similarity search over certain (deterministic) graphs due to its wide application in many fields, including bioinformatics, social network analysis, and Resource Description Framework (RDF) data management. All these works assume that the underlying data are certain. However, in reality, graphs are often noisy and uncertain due to various factors, such as errors in data extraction, inconsistencies in data integration, and privacy preserving purposes. Therefore, in this paper, we study subgraph similarity search on large probabilistic graph databases. Different from previous works assuming that edges in an uncertain graph are independent of each other, we study the uncertain graphs where edges occurrences are correlated. We formally prove that subgraph similarity search over probabilistic graphs is #P-complete, thus, we employ a filter-and-verify framework to speed up the search. In the filtering phase,we develop tight lower and upper bounds of subgraph similarity probability based on a probabilistic matrix index, PMI. PMI is composed of discriminative subgraph features associated with tight lower and upper bounds of subgraph isomorphism probability. Based on PMI, we can sort out a large number of probabilistic graphs and maximize the pruning capability. During the verification phase, we develop an efficient sampling algorithm to validate the remaining candidates. The efficiency of our proposed solutions has been verified through extensive experiments.
Finding or monitoring subgraph instances that are isomorphic to a given pattern graph in a data graph is a fundamental query operation in many graph analytic applications, such as network motif mining and fraud detection. The state-of-the-art distributed methods are inefficient in communication. They have to shuffle partial matching results during the distributed multiway join. The partial matching results may be much larger than the data graph itself. To overcome the drawback, we develop the Batch-BENU framework (B-BENU) for distributed subgraph enumeration. B-BENU executes a group of local search tasks in parallel. Each task enumerates subgraphs around a vertex in the data graph, guided by a backtracking-based execution plan. B-BENU does not shuffle any partial matching result. Instead, it stores the data graph in a distributed database. Each task queries adjacency sets of the data graph on demand. To support dynamic data graphs, we propose the concept of incremental pattern graphs and turn continuous subgraph enumeration into enumerating incremental pattern graphs at each time step. We develop the Streaming-BENU framework (S-BENU) to enumerate their matches efficiently. We implement B-BENU and S-BENU with the local database cache and the task splitting techniques. The extensive experiments show that B-BENU and S-BENU can scale to big data graphs and complex pattern graphs. They outperform the state-of-the-art methods by up to one and two orders of magnitude, respectively.
240 - Li Zeng , Lei Zou , M. Tamer Ozsu 2019
Subgraph isomorphism is a well-known NP-hard problem that is widely used in many applications, such as social network analysis and query over the knowledge graph. Due to the inherent hardness, its performance is often a bottleneck in various real-world applications. Therefore, we address this by designing an efficient subgraph isomorphism algorithm leveraging features of GPU architecture, such as massive parallelism and memory hierarchy. Existing GPU-based solutions adopt a two-step output scheme, performing the same join process twice in order to write intermediate results concurrently. They also lack GPU architecture-aware optimizations that allow scaling to large graphs. In this paper, we propose a GPU-friendly subgraph isomorphism algorithm, GSI. Different from existing edge join-based GPU solutions, we propose a Prealloc-Combine strategy based on the vertex-oriented framework, which avoids joining-twice in existing solutions. Also, a GPU-friendly data structure (called PCSR) is proposed to represent an edge-labeled graph. Extensive experiments on both synthetic and real graphs show that GSI outperforms the state-of-the-art algorithms by up to several orders of magnitude and has good scalability with graph size scaling to hundreds of millions of edges.
70 - Li Zeng , Yan Jiang , Weixin Lu 2020
Subgraph isomorphism is a well-known NP-hard problem which is widely used in many applications, such as social network analysis and knowledge graph query. Its performance is often limited by the inherent hardness. Several insightful works have been done since 2012, mainly optimizing pruning rules and matching orders to accelerate enumerating all isomorphic subgraphs. Nevertheless, their correctness and performance are not well studied. First, different languages are used in implementation with different compilation flags. Second, experiments are not done on the same platform and the same datasets. Third, some ideas of different works are even complementary. Last but not least, there exist errors when applying some algorithms. In this paper, we address these problems by re-implementing seven representative subgraph isomorphism algorithms as well as their improv
The Subgraph Matching (SM) problem consists of finding all the embeddings of a given small graph, called the query, into a large graph, called the target. The SM problem has been widely studied for simple graphs, i.e. graphs where there is exactly one edge between two nodes and nodes have single labels, but few approaches have been devised for labeled multigraphs, i.e. graphs having possibly multiple labels on nodes in which pair of nodes may have multiple labeled edges between them. Here we present MultiRI, a novel algorithm for the Sub-Multigraph Matching (SMM) problem, i.e. subgraph matching in labeled multigraphs. MultiRI improves on the state-of-the-art by computing compatibility domains and symmetry breaking conditions on query nodes to filter the search space of possible solutions. Empirically, we show that MultiRI outperforms the state-of-the-art method for the SMM problem in both synthetic and real graphs, with a multiplicative speedup between five and ten for large graphs, by using a limited amount of memory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا