No Arabic abstract
Self-driving cars must detect other vehicles and pedestrians in 3D to plan safe routes and avoid collisions. State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies, making them fail in new environments -- a serious problem if autonomous vehicles are meant to operate freely. In this paper, we propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain, which our method generates while the vehicle is parked, based on replays of previously recorded driving sequences. In these replays, objects are tracked over time, and detections are interpolated and extrapolated -- crucially, leveraging future information to catch hard cases. We show, on five autonomous driving datasets, that fine-tuning the object detector on these pseudo-labels substantially reduces the domain gap to new driving environments, yielding drastic improvements in accuracy and detection reliability.
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds. First, we pre-train the 3D detector on the source domain with our proposed random object scaling strategy for mitigating the negative effects of source domain bias. Then, the detector is iteratively improved on the target domain by alternatively conducting two steps, which are the pseudo label updating with the developed quality-aware triplet memory bank and the model training with curriculum data augmentation. These specific designs for 3D object detection enable the detector to be trained with consistent and high-quality pseudo labels and to avoid overfitting to the large number of easy examples in pseudo labeled data. Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark. Code will be available at https://github.com/CVMI-Lab/ST3D.
In this paper, we present a self-training method, named ST3D++, with a holistic pseudo label denoising pipeline for unsupervised domain adaptation on 3D object detection. ST3D++ aims at reducing noise in pseudo label generation as well as alleviating the negative impacts of noisy pseudo labels on model training. First, ST3D++ pre-trains the 3D object detector on the labeled source domain with random object scaling (ROS) which is designed to reduce target domain pseudo label noise arising from object scale bias of the source domain. Then, the detector is progressively improved through alternating between generating pseudo labels and training the object detector with pseudo-labeled target domain data. Here, we equip the pseudo label generation process with a hybrid quality-aware triplet memory to improve the quality and stability of generated pseudo labels. Meanwhile, in the model training stage, we propose a source data assisted training strategy and a curriculum data augmentation policy to effectively rectify noisy gradient directions and avoid model over-fitting to noisy pseudo labeled data. These specific designs enable the detector to be trained on meticulously refined pseudo labeled target data with denoised training signals, and thus effectively facilitate adapting an object detector to a target domain without requiring annotations. Finally, our method is assessed on four 3D benchmark datasets (i.e., Waymo, KITTI, Lyft, and nuScenes) for three common categories (i.e., car, pedestrian and bicycle). ST3D++ achieves state-of-the-art performance on all evaluated settings, outperforming the corresponding baseline by a large margin (e.g., 9.6% $sim$ 38.16% on Waymo $rightarrow$ KITTI in terms of AP$_{text{3D}}$), and even surpasses the fully supervised oracle results on the KITTI 3D object detection benchmark with target prior. Code will be available.
Unsupervised domain adaptive object detection aims to adapt detectors from a labelled source domain to an unlabelled target domain. Most existing works take a two-stage strategy that first generates region proposals and then detects objects of interest, where adversarial learning is widely adopted to mitigate the inter-domain discrepancy in both stages. However, adversarial learning may impair the alignment of well-aligned samples as it merely aligns the global distributions across domains. To address this issue, we design an uncertainty-aware domain adaptation network (UaDAN) that introduces conditional adversarial learning to align well-aligned and poorly-aligned samples separately in different manners. Specifically, we design an uncertainty metric that assesses the alignment of each sample and adjusts the strength of adversarial learning for well-aligned and poorly-aligned samples adaptively. In addition, we exploit the uncertainty metric to achieve curriculum learning that first performs easier image-level alignment and then more difficult instance-level alignment progressively. Extensive experiments over four challenging domain adaptive object detection datasets show that UaDAN achieves superior performance as compared with state-of-the-art methods.
This work tackles the unsupervised cross-domain object detection problem which aims to generalize a pre-trained object detector to a new target domain without labels. We propose an uncertainty-aware model adaptation method, which is based on two motivations: 1) the estimation and exploitation of model uncertainty in a new domain is critical for reliable domain adaptation; and 2) the joint alignment of distributions for inputs (feature alignment) and outputs (self-training) is needed. To this end, we compose a Bayesian CNN-based framework for uncertainty estimation in object detection, and propose an algorithm for generation of uncertainty-aware pseudo-labels. We also devise a scheme for joint feature alignment and self-training of the object detection model with uncertainty-aware pseudo-labels. Experiments on multiple cross-domain object detection benchmarks show that our proposed method achieves state-of-the-art performance.
We present a novel approach to perform the unsupervised domain adaptation for object detection through forward-backward cyclic (FBC) training. Recent adversarial training based domain adaptation methods have shown their effectiveness on minimizing domain discrepancy via marginal feature distributions alignment. However, aligning the marginal feature distributions does not guarantee the alignment of class conditional distributions. This limitation is more evident when adapting object detectors as the domain discrepancy is larger compared to the image classification task, e.g. various number of objects exist in one image and the majority of content in an image is the background. This motivates us to learn domain invariance for category level semantics via gradient alignment. Intuitively, if the gradients of two domains point in similar directions, then the learning of one domain can improve that of another domain. To achieve gradient alignment, we propose Forward-Backward Cyclic Adaptation, which iteratively computes adaptation from source to target via backward hopping and from target to source via forward passing. In addition, we align low-level features for adapting holistic color/texture via adversarial training. However, the detector performs well on both domains is not ideal for target domain. As such, in each cycle, domain diversity is enforced by maximum entropy regularization on the source domain to penalize confident source-specific learning and minimum entropy regularization on target domain to intrigue target-specific learning. Theoretical analysis of the training process is provided, and extensive experiments on challenging cross-domain object detection datasets have shown the superiority of our approach over the state-of-the-art.