Do you want to publish a course? Click here

Opportunities in Electrically Tunable 2D Materials Beyond Graphene: Recent Progress and Future Outlook

83   0   0.0 ( 0 )
 Added by Zakaria Al Balushi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interest in two-dimensional and layered materials continues to expand, driven by the compelling properties of individual atomic layers that can be stacked and/or twisted into synthetic heterostructures. The plethora of electronic properties as well as the emergence of many different quasiparticles, including plasmons, polaritons, trions and excitons with large, tunable binding energies that all can be controlled and modulated through electrical means has given rise to many device applications. In addition, these materials exhibit both room-temperature spin and valley polarization, magnetism, superconductivity, piezoelectricity that are intricately dependent on the composition, crystal structure, stacking, twist angle, layer number and phases of these materials. Initial results on graphene exfoliated from single bulk crystals motivated the development of wide-area, high purity synthesis and heterojunctions with atomically clean interfaces. Now by opening this design space to new synthetic two-dimensional materials beyond graphene, it is possible to explore uncharted opportunities in designing novel heterostructures for electrical tunable devices. To fully reveal the emerging functionalities and opportunities of these atomically thin materials in practical applications, this review highlights several representative and noteworthy research directions in the use of electrical means to tune these aforementioned physical and structural properties, with an emphasis on discussing major applications of beyond graphene 2D materials in tunable devices in the past few years and an outlook of what is to come in the next decade.

rate research

Read More

Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alphaapprox 0.3 ^circ$) and flat bands at magic angles ($alpha approx 1^circ$). We show that tuning the twist angle to $alpha^*approx 0.8^circ$ generates flat bands away from charge neutrality with a triangular superlattice periodicity. When doped with $pm 6$ electrons per moire cell, these bands are half-filled and electronic interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose a solid-state platform that realizes electrically tunable strong correlations.
Low-symmetry 2D materials---such as ReS$_2$ and ReSe$_2$ monolayers, black phosphorus monolayers, group-IV monochalcogenide monolayers, borophene, among others---have more complex atomistic structures than the honeycomb lattices of graphene, hexagonal boron nitride, and transition metal dichalcogenides. The reduced symmetries of these emerging materials give rise to inhomogeneous electron, optical, valley, and spin responses, as well as entirely new properties such as ferroelasticity, ferroelectricity, magnetism, spin-wave phenomena, large nonlinear optical properties, photogalvanic effects, and superconductivity. Novel electronic topological properties, nonlinear elastic properties, and structural phase transformations can also take place due to low symmetry. The Beyond Graphene: Low-Symmetry and Anisotropic 2D Materials Special Topic was assembled to highlight recent experimental and theoretical research on these emerging materials.
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The Magnesium group of international experts contributing to IEA Task 32 Hydrogen Based Energy Storage recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2,nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
115 - Minhao He , Yuhao Li , Jiaqi Cai 2020
A variety of correlated phases have recently emerged in select twisted van der Waals (vdW) heterostructures owing to their flat electronic dispersions. In particular, heterostructures of twisted double bilayer graphene (tDBG) manifest electric field-tunable correlated insulating (CI) states at all quarter fillings of the conduction band, accompanied by nearby states featuring signatures suggestive of superconductivity. Here, we report electrical transport measurements of tDBG in which we elucidate the fundamental role of spontaneous symmetry breaking within its correlated phase diagram. We observe abrupt resistivity drops upon lowering the temperature in the correlated metallic phases neighboring the CI states, along with associated nonlinear $I$-$V$ characteristics. Despite qualitative similarities to superconductivity, concomitant reversals in the sign of the Hall coefficient instead point to spontaneous symmetry breaking as the origin of the abrupt resistivity drops, while Joule heating appears to underlie the nonlinear transport. Our results suggest that similar mechanisms are likely relevant across a broader class of semiconducting flat band vdW heterostructures.
Studies on two-dimensional electron systems in a strong magnetic field first revealed the quantum Hall (QH) effect, a topological state of matter featuring a finite Chern number (C) and chiral edge states. Haldane later theorized that Chern insulators with integer QH effects could appear in lattice models with complex hopping parameters even at zero magnetic field. The ABC-trilayer graphene/hexagonal boron nitride (TLG/hBN) moire superlattice provides an attractive platform to explore Chern insulators because it features nearly flat moire minibands with a valley-dependent electrically tunable Chern number. Here we report the experimental observation of a correlated Chern insulator in a TLG/hBN moire superlattice. We show that reversing the direction of the applied vertical electric field switches TLG/hBNs moire minibands between zero and finite Chern numbers, as revealed by dramatic changes in magneto-transport behavior. For topological hole minibands tuned to have a finite Chern number, we focus on 1/4 filling, corresponding to one hole per moire unit cell. The Hall resistance is well quantized at h/2e2, i.e. C = 2, for |B| > 0.4 T. The correlated Chern insulator is ferromagnetic, exhibiting significant magnetic hysteresis and a large anomalous Hall signal at zero magnetic field. Our discovery of a C = 2 Chern insulator at zero magnetic field should open up exciting opportunities for discovering novel correlated topological states, possibly with novel topological excitations, in nearly flat and topologically nontrivial moire minibands.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا