Do you want to publish a course? Click here

Contrasting Contrastive Self-Supervised Representation Learning Pipelines

198   0   0.0 ( 0 )
 Added by Roozbeh Mottaghi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In the past few years, we have witnessed remarkable breakthroughs in self-supervised representation learning. Despite the success and adoption of representations learned through this paradigm, much is yet to be understood about how different training methods and datasets influence performance on downstream tasks. In this paper, we analyze contrastive approaches as one of the most successful and popular variants of self-supervised representation learning. We perform this analysis from the perspective of the training algorithms, pre-training datasets and end tasks. We examine over 700 training experiments including 30 encoders, 4 pre-training datasets and 20 diverse downstream tasks. Our experiments address various questions regarding the performance of self-supervised models compared to their supervised counterparts, current benchmarks used for evaluation, and the effect of the pre-training data on end task performance. Our Visual Representation Benchmark (ViRB) is available at: https://github.com/allenai/virb.



rate research

Read More

In medical imaging, manual annotations can be expensive to acquire and sometimes infeasible to access, making conventional deep learning-based models difficult to scale. As a result, it would be beneficial if useful representations could be derived from raw data without the need for manual annotations. In this paper, we propose to address the problem of self-supervised representation learning with multi-modal ultrasound video-speech raw data. For this case, we assume that there is a high correlation between the ultrasound video and the corresponding narrative speech audio of the sonographer. In order to learn meaningful representations, the model needs to identify such correlation and at the same time understand the underlying anatomical features. We designed a framework to model the correspondence between video and audio without any kind of human annotations. Within this framework, we introduce cross-modal contrastive learning and an affinity-aware self-paced learning scheme to enhance correlation modelling. Experimental evaluations on multi-modal fetal ultrasound video and audio show that the proposed approach is able to learn strong representations and transfers well to downstream tasks of standard plane detection and eye-gaze prediction.
Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to collect and can be scarce for medical imaging applications. Therefore, there is significant interest in learning representations from unlabelled raw data. In this paper, we propose a self-supervised learning approach to learn meaningful and transferable representations from medical imaging video without any type of human annotation. We assume that in order to learn such a representation, the model should identify anatomical structures from the unlabelled data. Therefore we force the model to address anatomy-aware tasks with free supervision from the data itself. Specifically, the model is designed to correct the order of a reshuffled video clip and at the same time predict the geometric transformation applied to the video clip. Experiments on fetal ultrasound video show that the proposed approach can effectively learn meaningful and strong representations, which transfer well to downstream tasks like standard plane detection and saliency prediction.
Self-supervised representation learning is able to learn semantically meaningful features; however, much of its recent success relies on multiple crops of an image with very few objects. Instead of learning view-invariant representation from simple images, humans learn representations in a complex world with changing scenes by observing object movement, deformation, pose variation, and ego motion. Motivated by this ability, we present a new self-supervised learning representation framework that can be directly deployed on a video stream of complex scenes with many moving objects. Our framework features a simple flow equivariance objective that encourages the network to predict the features of another frame by applying a flow transformation to the features of the current frame. Our representations, learned from high-resolution raw video, can be readily used for downstream tasks on static images. Readout experiments on challenging semantic segmentation, instance segmentation, and object detection benchmarks show that we are able to outperform representations obtained from previous state-of-the-art methods including SimCLR and BYOL.
Climate change has caused reductions in river runoffs and aquifer recharge resulting in an increasingly unsustainable crop water demand from reduced freshwater availability. Achieving food security while deploying water in a sustainable manner will continue to be a major challenge necessitating careful monitoring and tracking of agricultural water usage. Historically, monitoring water usage has been a slow and expensive manual process with many imperfections and abuses. Ma-chine learning and remote sensing developments have increased the ability to automatically monitor irrigation patterns, but existing techniques often require curated and labelled irrigation data, which are expensive and time consuming to obtain and may not exist for impactful areas such as developing countries. In this paper, we explore an end-to-end real world application of irrigation detection with uncurated and unlabeled satellite imagery. We apply state-of-the-art self-supervised deep learning techniques to optical remote sensing data, and find that we are able to detect irrigation with up to nine times better precision, 90% better recall and 40% more generalization ability than the traditional supervised learning methods.
157 - Wei Li , Yuanjun Xiong , Shuo Yang 2021
Online tracking of multiple objects in videos requires strong capacity of modeling and matching object appearances. Previous methods for learning appearance embedding mostly rely on instance-level matching without considering the temporal continuity provided by videos. We design a new instance-to-track matching objective to learn appearance embedding that compares a candidate detection to the embedding of the tracks persisted in the tracker. It enables us to learn not only from videos labeled with complete tracks, but also unlabeled or partially labeled videos. We implement this learning objective in a unified form following the spirit of constrastive loss. Experiments on multiple object tracking datasets demonstrate that our method can effectively learning discriminative appearance embeddings in a semi-supervised fashion and outperform state of the art methods on representative benchmarks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا