Inspired by Laughlins theory of the fractional quantum Hall effect, we propose a wave function for the quark-gluon plasma and the nucleons. In our model, each quark is transformed into a composite particle via the simultaneous attachment of a spin monopole and an isospin monopole. This is induced by the mesons endowed with both spin and isospin degrees of freedom. The interactions in the strongly-correlated quark-gluon system are governed by the topological wrapping number of the monopoles, which is an odd integer to ensure that the overall wave function is antisymmetric. The states of the quark-gluon plasma and the nucleons are thus uniquely determined by the combination of the monopole wrapping number m and the total quark number N. The radius squared of the quark-gluon plasma is expected to be proportional to mN. We anticipate the observation of such proportionality in the heavy ion collision experiments.