Do you want to publish a course? Click here

Pricing and Energy Trading in Peer-to-peer Zero Marginal-cost Microgrids

154   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Efforts to efficiently promote the participation of distributed energy resources in community microgrids require new approaches to energy markets and transactions in power systems. In this paper, we contribute to the promising approach of peer-to-peer (P2P) energy trading. We first formalize a centralized welfare maximization model of an economic dispatch with perfect information based on the value of consumption with zero marginal-cost energy. We characterize the optimal solution and corresponding price to serve as a reference for P2P approaches and show that the profit-maximizing strategy for individuals with storage in response to an optimal price is not unique. Second, we develop a novel P2P algorithm for negotiating energy trades based on iterative price and quantity offers that yields physically feasible and at least weakly Pareto-optimal outcomes. We prove that the P2P algorithm converges to the centralized solution in the case of two agents negotiating for a single period, demonstrate convergence for the multi-agent, multi-period case through a large set of random simulations, and analyze the effects of storage penetration on the solution.



rate research

Read More

142 - Yue Chen , Wei Wei , Mingxuan Li 2021
Flexible load at the demand-side has been regarded as an effective measure to cope with volatile distributed renewable generations. To unlock the demand-side flexibility, this paper proposes a peer-to-peer energy sharing mechanism that facilitates energy exchange among users while preserving privacy. We prove the existence and partial uniqueness of the energy sharing market equilibrium and provide a centralized optimization to obtain the equilibrium. The centralized optimization is further linearized by a convex combination approach, turning into a multi-parametric linear program (MP-LP) with renewable output deviations being the parameters. The flexibility requirement of individual users is calculated based on this MP-LP. To be specific, an adaptive vertex generation algorithm is established to construct a piecewise linear estimator of the optimal total cost subject to a given error tolerance. Critical regions and optimal strategies are retrieved from the obtained approximate cost function to evaluate the flexibility requirement. The proposed algorithm does not rely on the exact characterization of optimal basis invariant sets and thus is not influenced by model degeneracy, a common difficulty faced by existing approaches. Case studies validate the theoretical results and show that the proposed method is scalable.
Scalability and security problems of the centralized architecture models in cyberphysical systems have great potential to be solved by novel blockchain based distributed models.A decentralized energy trading system takes advantage of various sources and effectively coordinates the energy to ensure optimal utilization of the available resources. It achieves that goal by managing physical, social and business infrastructures using technologies such as Internet of Things (IoT), cloud computing and network systems. Addressing the importance of blockchain-enabled energy trading in the context of cyberphysical systems, this article provides a thorough overview of the P2P energy trading and the utilization of blockchain to enhance the efficiency and the overall performance including the degree of decentralization, scalability and the security of the systems. Three blockchain based energy trading models have been proposed to overcome the technical challenges and market barriers for better adoption of this disruptive technology.
Blockchain is increasingly being used as a distributed, anonymous, trustless framework for energy trading in smart grids. However, most of the existing solutions suffer from reliance on Trusted Third Parties (TTP), lack of privacy, and traffic and processing overheads. In our previous work, we have proposed a Secure Private Blockchain-based framework (SPB) for energy trading to address the aforementioned challenges. In this paper, we present a proof-on-concept implementation of SPB on the Ethereum private network to demonstrates SPBs applicability for energy trading. We benchmark SPBs performance against the relevant state-of-the-art. The implementation results demonstrate that SPB incurs lower overheads and monetary cost for end users to trade energy compared to existing solutions.
This paper studies social cooperation backed peer-to-peer energy trading technique by which prosumers can decide how they can use their batteries opportunistically for participating in the peer-to-peer trading. The objective is to achieve a solution in which the ultimate beneficiaries are the prosumers, i.e., a prosumer-centric solution. To do so, a coalition formation game is designed, which enables a prosumer to compare its benefit of participating in the peer-to-peer trading with and without using its battery and thus, allows the prosumer to form suitable social coalition groups with other similar prosumers in the network for conducting peer-to-peer trading. The properties of the formed coalitions are studied, and it is shown that 1) the coalition structure that stems from the social cooperation between participating prosumers at each time slot is both stable and optimal, and 2) the outcomes of the proposed peer- to-peer trading scheme is prosumer-centric. Case studies are conducted based on real household energy usage and solar generation data to highlight how the proposed scheme can benefit prosumers through exhibiting prosumer-centric properties.
Peer-to-Peer (P2P) energy trading can facilitate integration of a large number of small-scale producers and consumers into energy markets. Decentralized management of these new market participants is challenging in terms of market settlement, participant reputation and consideration of grid constraints. This paper proposes a blockchain-enabled framework for P2P energy trading among producer and consumer agents in a smart grid. A fully decentralized market settlement mechanism is designed, which does not rely on a centralized entity to settle the market and encourages producers and consumers to negotiate on energy trading with their nearby agents truthfully. To this end, the electrical distance of agents is considered in the pricing mechanism to encourage agents to trade with their neighboring agents. In addition, a reputation factor is considered for each agent, reflecting its past performance in delivering the committed energy. Before starting the negotiation, agents select their trading partners based on their preferences over the reputation and proximity of the trading partners. An Anonymous Proof of Location (A-PoL) algorithm is proposed that allows agents to prove their location without revealing their real identity. The practicality of the proposed framework is illustrated through several case studies, and its security and privacy are analyzed in detail.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا