Do you want to publish a course? Click here

Baryogenesis via Leptogenesis: Spontaneous B and L Violation

89   0   0.0 ( 0 )
 Added by Alexis Plascencia
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In order to address the baryon asymmetry in the Universe one needs to understand the origin of baryon (B) and lepton (L) number violation. In this article, we discuss the mechanism of baryogenesis via leptogenesis to explain the matter-antimatter asymmetry in theories with spontaneous breaking of baryon and lepton number. In this context, a lepton asymmetry is generated through the out-of-equilibrium decays of right-handed neutrinos at the high-scale, while local baryon number must be broken below the multi-TeV scale to satisfy the cosmological bounds on the dark matter relic density. We demonstrate how the lepton asymmetry generated via leptogenesis can be converted in two different ways: a) in the theory predicting Majorana dark matter the lepton asymmetry is converted into a baryon asymmetry, and b) in the theory with Dirac dark matter the decays of right-handed neutrinos can generate lepton and dark matter asymmetries that are then partially converted into a baryon asymmetry. Consequently, we show how to explain the matter-antimatter asymmetry, the dark matter relic density and neutrino masses in theories for local baryon and lepton number.



rate research

Read More

Right-handed neutrinos offer an elegant solution to two well established phenomena beyond the Standard Model (SM) - masses and oscillations of neutrinos, as well as the baryon asymmetry of the Universe. It is also a minimalistic solution since it requires only singlet Majorana fermions to be added to the SM particle content. If these fermions are nearly degenerate, the mass scale of right-handed neutrinos can be very low and accessible by the present and planned experiments. There are at least two well studied mechanisms of the low-scale leptogenesis: baryogenesis via oscillations and resonant leptogenesis. These two mechanisms were often considered separate, but they can in fact be understood as two different regimes of one and the same mechanism, described by a unique set of quantum kinetic equations. In this work we show, using a unified description based on quantum kinetic equations, that the parameter space of these two regimes of low-scale leptogenesis significantly overlap. We present a comprehensive study of the parameter space of the low-scale leptogenesis with the mass scale ranging from $0.1$ GeV to $sim 10^6$ GeV. The unified perspective of this work reveals the synergy between intensity and energy frontiers in the quest for heavy Majorana neutrinos.
We study baryogenesis in effective field theories where a $mathrm{U}(1)_{ B-L}$-charged scalar couples to gravity via curvature invariants. We analyze the general possibilities in such models, noting the relationships between some of them and existing models, such as Affleck-Dine baryogenesis. We then identify a novel mechanism in which $mathrm{U}(1)_{ B-L}$ can be broken by couplings to the Gauss-Bonnet invariant during inflation and reheating. Using analytic methods, we demonstrate that this mechanism provides a new way to dynamically generate the net matter-anti-matter asymmetry observed today, and verify this numerically.
We explore the generation of the baryon asymmetry in an extension of the Standard Model where the lepton number is promoted to a $U(1)_ell$ gauge symmetry with an associated $Z^prime$ gauge boson. This is based on a novel electroweak baryogenesis mechanism first proposed by us in Ref. cite{Carena:2018cjh}. Extra fermionic degrees of freedom - including a fermionic dark matter $chi$ - are introduced in the dark sector for anomaly cancellation. Lepton number is spontaneously broken at high scale and the effective theory, containing the Standard Model, the $Z^prime$, the fermionic dark matter, and an additional complex scalar field $S$, violates CP in the dark sector. The complex scalar field couples to the Higgs portal and is essential in enabling a strong first order phase transition. Dark CP violation is diffused in front of the bubble walls and creates a chiral asymmetry for $chi$, which in turn creates a chemical potential for the Standard Model leptons. Weak sphalerons are then in charge of transforming the net lepton charge asymmetry into net baryon number. We explore the model phenomenology related to the leptophilic $Z^prime$, the dark matter candidate, the Higgs boson and the additional scalar, as well as implications for electric dipole moments. We also discuss the case when baryon number $U(1)_B$ is promoted to a gauge symmetry, and discuss electroweak baryogenesis and its corresponding phenomenology.
We show that in supersymmetric models with gauged B-L symmetry, there is a new source for cosmological lepton asymmetry. The Higgs bosons responsible for B-L gauge symmetry breaking decay dominantly into right-handed sneutrinos tilde{N} and tilde{N}* producing an asymmetry in tilde{N} over tilde{N}*. This can be fully converted into ordinary lepton asymmetry in the decays of tilde{N}. In simple models with gauged B-L symmetry we show that resonant/soft leptogenesis is naturally realized. Supersymmetry guarantees quasi-degenerate scalar states, while soft breaking of SUSY provides the needed CP violation. Acceptable values of baryon asymmetry are obtained without causing serious problems with gravitino abundance.
201 - Werner Rodejohann 2008
The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix we consider reconstructing the see-saw mechanism. Low energy neutrino physics is not sufficient to reconstruct see-saw, a feature which we refer to as ``see-saw degeneracy. Indirect tests of see-saw are leptogenesis and lepton flavor violation in supersymmetric scenarios, which together with neutrino mass and mixing define the framework of see-saw phenomenology. Several examples are given, both phenomenological and GUT-related. Variants of the see-saw mechanism like the type II or triplet see-saw are also discussed. In particular, we compare many general aspects regarding the dependence of LFV on low energy neutrino parameters in the extreme cases of a dominating conventional see-saw term or a dominating triplet term. For instance, the absence of mu -> e gamma or tau -> e gamma in the pure triplet case means that CP is conserved in neutrino oscillations. Scanning models, we also find that among the decays mu -> e gamma, tau -> e gamma and tau -> mu gamma the latter one has the largest branching ratio in (i) SO(10) type I see-saw models and in (ii) scenarios in which the triplet term dominates in the neutrino mass matrix.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا