No Arabic abstract
In this paper, we characterize quasicrystalline interacting topological phases of matter i.e., phases protected by some quasicrystalline structure. We show that the elasticity theory of quasicrystals, which accounts for both phonon and phason modes, admits non-trivial quantized topological terms with far richer structure than their crystalline counterparts. We show that these terms correspond to distinct phases of matter and also uncover intrinsically quasicrystalline phases, which have no crystalline analogues. For quasicrystals with internal $mathrm{U}(1)$ symmetry, we discuss a number of interpretations and physical implications of the topological terms, including constraints on the mobility of dislocations in $d=2$ quasicrystals and a quasicrystalline generalization of the Lieb-Schultz-Mattis-Oshikawa-Hastings theorem. We then extend these ideas much further and address the complete classification of quasicrystalline topological phases, including systems with point-group symmetry as well as non-invertible phases. We hence obtain the Quasicrystalline Equivalence Principle, which generalizes the classification of crystalline topological phases to the quasicrystalline setting.
Controlling the electronic properties of interfaces has enormous scientific and technological implications and has been recently extended from semiconductors to complex oxides which host emergent ground states not present in the parent materials. These oxide interfaces present a fundamentally new opportunity where, instead of conventional bandgap engineering, the electronic and magnetic properties can be optimized by engineering quantum many-body interactions. We utilize an integrated oxide molecular-beam epitaxy and angle-resolved photoemission spectroscopy system to synthesize and investigate the electronic structure of superlattices of the Mott insulator LaMnO3 and the band insulator SrMnO3. By digitally varying the separation between interfaces in (LaMnO3)2n/(SrMnO3)n superlattices with atomic-layer precision, we demonstrate that quantum many-body interactions are enhanced, driving the electronic states from a ferromagnetic polaronic metal to a pseudogapped insulating ground state. This work demonstrates how many-body interactions can be engineered at correlated oxide interfaces, an important prerequisite to exploiting such effects in novel electronics.
Recently Wang and Cheng proposed a self-consistent effective Hamiltonian theory (SCEHT) for many-body fermionic systems (Wang & Cheng, 2019). This paper attempts to provide a mathematical foundation to the formulation of the SCEHT that enables further study of excited states of the system in a more systematic and theoretical manner. Gauge fields are introduced and correct total energy functional in relations to the coupling gauge field is given. We also provides a Monte-Carlo numerical scheme for the search of the ground state that goes beyond the SCEHT.
A numerical bootstrap method is proposed to provide rigorous and nontrivial bounds in general quantum many-body systems with locality. In particular, lower bounds on ground state energies of local lattice systems are obtained by imposing positivity constraints on certain operator expectation values. Complemented with variational upper bounds, ground state observables are constrained to be within a narrow range. The method is demonstrated with the Hubbard model in one and two dimensions, and bounds on ground state double occupancy and magnetization are discussed.
Characterizing states of matter through the lens of their ergodic properties is a fascinating new direction of research. In the quantum realm, the many-body localization (MBL) was proposed to be the paradigmatic ergodicity breaking phenomenon, which extends the concept of Anderson localization to interacting systems. At the same time, random matrix theory has established a powerful framework for characterizing the onset of quantum chaos and ergodicity (or the absence thereof) in quantum many-body systems. Here we numerically study the spectral statistics of disordered interacting spin chains, which represent prototype models expected to exhibit MBL. We study the ergodicity indicator $g=log_{10}(t_{rm H}/t_{rm Th})$, which is defined through the ratio of two characteristic many-body time scales, the Thouless time $t_{rm Th}$ and the Heisenberg time $t_{rm H}$, and hence resembles the logarithm of the dimensionless conductance introduced in the context of Anderson localization. We argue that the ergodicity breaking transition in interacting spin chains occurs when both time scales are of the same order, $t_{rm Th} approx t_{rm H}$, and $g$ becomes a system-size independent constant. Hence, the ergodicity breaking transition in many-body systems carries certain analogies with the Anderson localization transition. Intriguingly, using a Berezinskii-Kosterlitz-Thouless correlation length we observe a scaling solution of $g$ across the transition, which allows for detection of the crossing point in finite systems. We discuss the observation that scaled results in finite systems by increasing the system size exhibit a flow towards the quantum chaotic regime.
We show that the magnetization of a single `qubit spin weakly coupled to an otherwise isolated disordered spin chain exhibits periodic revivals in the localized regime, and retains an imprint of its initial magnetization at infinite time. We demonstrate that the revival rate is strongly suppressed upon adding interactions after a time scale corresponding to the onset of the dephasing that distinguishes many-body localized phases from Anderson insulators. In contrast, the ergodic phase acts as a bath for the qubit, with no revivals visible on the time scales studied. The suppression of quantum revivals of local observables provides a quantitative, experimentally observable alternative to entanglement growth as a measure of the `non-ergodic but dephasing nature of many-body localized systems.