Do you want to publish a course? Click here

Preparing Bethe Ansatz Eigenstates on a Quantum Computer

182   0   0.0 ( 0 )
 Added by John Van Dyke
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several quantum many-body models in one dimension possess exact solutions via the Bethe ansatz method, which has been highly successful for understanding their behavior. Nevertheless, there remain physical properties of such models for which analytic results are unavailable, and which are also not well-described by approximate numerical methods. Preparing Bethe ansatz eigenstates directly on a quantum computer would allow straightforward extraction of these quantities via measurement. We present a quantum algorithm for preparing Bethe ansatz eigenstates of the XXZ spin chain that correspond to real-valued solutions of the Bethe equations. The algorithm is polynomial in the number of T gates and circuit depth, with modest constant prefactors. Although the algorithm is probabilistic, with a success rate that decreases with increasing eigenstate energy, we employ amplitude amplification to boost the success probability. The resource requirements for our approach are lower than other state-of-the-art quantum simulation algorithms for small error-corrected devices, and thus may offer an alternative and computationally less-demanding demonstration of quantum advantage for physically relevant problems.



rate research

Read More

We consider the feasibility of studying the anisotropic Heisenberg quantum spin chain with the Variational Quantum Eigensolver (VQE) algorithm, by treating Bethe states as variational states, and Bethe roots as variational parameters. For short chains, we construct exact one-magnon trial states that are functions of the variational parameter, and implement the VQE calculations in Qiskit. However, exact multi-magnon trial states appear to be out out of reach.
The open spin-1/2 XXZ spin chain with diagonal boundary magnetic fields is the paradigmatic example of a quantum integrable model with open boundary conditions. We formulate a quantum algorithm for preparing Bethe states of this model, corresponding to real solutions of the Bethe equations. The algorithm is probabilistic, with a success probability that decreases with the number of down spins. For a Bethe state of $L$ spins with $M$ down spins, which contains a total of $binom{L}{M}, 2^{M}, M!$ terms, the algorithm requires $L+M^2+2M$ qubits.
A key requirement to perform simulations of large quantum systems on near-term quantum hardware is the design of quantum algorithms with short circuit depth that finish within the available coherence time. A way to stay within the limits of coherence is to reduce the number of gates by implementing a gate set that matches the requirements of the specific algorithm of interest directly in hardware. Here, we show that exchange-type gates are a promising choice for simulating molecular eigenstates on near-term quantum devices since these gates preserve the number of excitations in the system. Complementing the theoretical work by Barkoutsos et al. [PRA 98, 022322 (2018)], we report on the experimental implementation of a variational algorithm on a superconducting qubit platform to compute the eigenstate energies of molecular hydrogen. We utilize a parametrically driven tunable coupler to realize exchange-type gates that are configurable in amplitude and phase on two fixed-frequency superconducting qubits. With gate fidelities around 95% we are able to compute the eigenstates within an accuracy of 50 mHartree on average, a limit set by the coherence time of the tunable coupler.
We analyze the conditions for producing atomic number states in a one-dimensional optical box using the Bethe ansatz method. This approach provides a general framework, enabling the study of number state production over a wide range of realistic experimental parameters.
In this paper, we investigate the effect of different optical field initial states on the performance of Tavis-Cummings(T-C) quantum battery. In solving the dynamical evolution of the system, we found a fast way to solve the Bethe ansatz equation. We find that the stored energy and the average charging power of the T-C quantum battery are closely related to the probability distribution of the optical field initial state in the number states. We define a quantity called the number state stored energy. With this prescribed quantity, we only need to know the probability distribution of the optical field initial state in the number states to obtain the stored energy and the average charging power of the T-C quantum battery at any moment. We propose an equal probability and equal expected value allocation method by which we can obtain two inequalities, and the two inequalities can be reduced to Jensens inequalities. By this method, we found the optimal initial state of the optical field. We found that the maximum stored energy and the maximum average charging power of the T-C quantum battery are proportional to the initial average photon number. The quantum battery can be fully charged when the initial average photon number is large enough. We found two novel phenomena, which can be described by two empirical inequalities. These two novel phenomena reflect the hypersensitivity of the stored energy of the T-C quantum battery to the number-state cavity field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا