Photoionisation Modelling of the X-ray Emission Line Regions within the Seyfert 2 AGN NGC 1068


Abstract in English

We investigate the photoionised X-ray emission line regions (ELRs) within the Seyfert 2 galaxy NGC 1068, to determine if there are any characteristic changes between observations taken fourteen years apart. We compare XMM-Newton observations collected in 2000 and 2014, simultaneously fitting the reflection grating spectrometer (RGS) and EPIC-pn spectra of each epoch, for the first time, with the photoionisation model, PION, in SPEX. We find that four PION components are required to fit the majority of the emission lines in the spectra of NGC 1068, with $log xi=1-4$, $log N_H>26 m^{-2}$, and $v_{out}=-100$ to $-600 kms^{-1}$ for both epochs. Comparing the ionisation state of the components shows almost no difference between the two epochs, while there is an increase in the total column density. To estimate the locations of these plasma regions from the central black hole we compare distance methods, excluding the variability arguments as there is no spectral change between observations. Although the methods are unable to constrain the distances, the locations are consistent with the narrow line region, with the possibility of the higher ionised component being part of the broad line region, but we cannot conclude this for certain. In addition, we find evidence for emission from collisionally ionised plasma, while previous analysis had suggested that collisional plasma emission was unlikely. However, although PION is unable to account for the FeXVII emission lines at 15 and 17 AA, we do not rule out that photoexcitation is a valid processes to produce these lines too. NGC 1068 has not changed, both in terms of the observed spectra or from our modelling, within the 14 year time period between observations. This suggests that the ELRs are fairly static relative to the 14 year time frame between observations, or there is no dramatic change in the black hole variability.

Download