No Arabic abstract
This letter analyzes a class of information freshness metrics for large IoT systems in which terminals employ slotted ALOHA to access a common channel. Considering a Gilbert- Elliot channel model, information freshness is evaluated through a penalty function that follows a power law of the time elapsed since the last received update, in contrast with the linear growth of age of information. By means of a signal flow graph analysis of Markov processes, we provide exact closed form expressions for the average penalty and for the peak penalty violation probability.
We study age of information in a status updating system that consists of a single sampler, i.e., source node, that sends time-sensitive status updates to a single monitor node through a server node. We first consider a Gilbert-Elliot service profile at the server node. In this model, service times at the server node follow a finite state Markov chain with two states: ${bad}$ state $b$ and ${good}$ state $g$ where the server is faster in state $g$. We determine the time average age experienced by the monitor node and characterize the age-optimal state transition matrix $P$ with and without an average cost constraint on the service operation. Next, we consider a Gilbert-Elliot sampling profile at the source. In this model, the interarrival times follow a finite state Markov chain with two states: ${bad}$ state $b$ and ${good}$ state $g$ where samples are more frequent in state $g$. We find the time average age experienced by the monitor node and characterize the age-optimal state transition matrix $P$.
In this paper, we design a new polar slotted ALOHA (PSA) protocol over the slot erasure channels, which uses polar coding to construct the identical slot pattern (SP) assembles within each active user and base station. A theoretical analysis framework for the PSA is provided. First, by using the packet-oriented operation for the overlap packets when they conflict in a slot interval, we introduce the packet-based polarization transform and prove that this transform is independent of the packets length. Second, guided by the packet-based polarization, an SP assignment (SPA) method with the variable slot erasure probability (SEP) and a SPA method with a fixed SEP value are designed for the PSA scheme. Then, a packet-oriented successive cancellation (pSC) and a pSC list (pSCL) decoding algorithm are developed. Simultaneously, the finite-slots throughput bounds and the asymptotic throughput for the pSC algorithm are analyzed. The simulation results show that the proposed PSA scheme can achieve an improved throughput with the pSC/SCL decoding algorithm over the traditional repetition slotted ALOHA scheme.
We present a comprehensive steady-state analysis of threshold-ALOHA, a distributed age-aware modification of slotted ALOHA proposed in recent literature. In threshold-ALOHA, each terminal suspends its transmissions until the Age of Information (AoI) of the status update flow it is sending reaches a certain threshold $Gamma$. Once the age exceeds $Gamma$, the terminal attempts transmission with constant probability $tau$ in each slot, as in standard slotted ALOHA. We analyze the time-average expected AoI attained by this policy, and explore its scaling with network size, $n$. We derive the probability distribution of the number of active users at steady state, and show that as network size increases the policy converges to one that runs slotted ALOHA with fewer sources: on average about one fifth of the users is active at any time. We obtain an expression for steady-state expected AoI and use this to optimize the parameters $Gamma$ and $tau$, resolving the conjectures in cite{doga} by confirming that the optimal age threshold and transmission probability are $2.2n$ and $4.69/n$, respectively. We find that the optimal AoI scales with the network size as $1.4169n$, which is almost half the minimum AoI achievable with slotted ALOHA, while the loss from the maximum throughput of $e^{-1}$ remains below $1%$. We compare the performance of this rudimentary algorithm to that of the SAT policy that dynamically adapts its transmission probabilities.
Age of Information (AoI) has become an important concept in communications, as it allows system designers to measure the freshness of the information available to remote monitoring or control processes. However, its definition tacitly assumed that new information is used at any time, which is not always the case and the instants at which information is collected and used are dependent on a certain query process. We propose a model that accounts for the discrete time nature of many monitoring processes, considering a pull-based communication model in which the freshness of information is only important when the receiver generates a query. We then define the Age of Information at Query (QAoI), a more general metric that fits the pull-based scenario, and show how its optimization can lead to very different choices from traditional push-based AoI optimization when using a Packet Erasure Channel (PEC).
We consider a cache updating system with a source, a cache and a user. There are $n$ files. The source keeps the freshest version of the files which are updated with known rates $lambda_i$. The cache downloads and keeps the freshest version of the files from the source with rates $c_i$. The user gets updates from the cache with rates $u_i$. When the user gets an update, it either gets a fresh update from the cache or the file at the cache becomes outdated by a file update at the source in which case the user gets an outdated update. We find an analytical expression for the average freshness of the files at the user. Next, we generalize our setting to the case where there are multiple caches in between the source and the user, and find the average freshness at the user. We provide an alternating maximization based method to find the update rates for the cache(s), $c_i$, and for the user, $u_i$, to maximize the freshness of the files at the user. We observe that for a given set of update rates for the user (resp. for the cache), the optimal rate allocation policy for the cache (resp. for the user) is a $threshold$ $policy$, where the optimal update rates for rapidly changing files at the source may be equal to zero. Finally, we consider a system where multiple users are connected to a single cache and find update rates for the cache and the users to maximize the total freshness over all users.