Interlayer Electronic Coupling on Demand in a 2D Magnetic Semiconductor


Abstract in English

When monolayers of two-dimensional (2D) materials are stacked into van der Waals structures, interlayer electronic coupling can introduce entirely new properties, as exemplified by recent discoveries of moire bands that host highly correlated electronic states and quantum dot-like interlayer exciton lattices. Here we show the magnetic control of interlayer electronic coupling, as manifested in tunable excitonic transitions, in an A-type antiferromagnetic 2D semiconductor CrSBr. Excitonic transitions in bilayer and above can be drastically changed when the magnetic order is switched from layered antiferromagnetic to the field-induced ferromagnetic state, an effect attributed to the spin-allowed interlayer hybridization of electron and hole orbitals in the latter, as revealed by GW-BSE calculations. Our work uncovers a magnetic approach to engineer electronic and excitonic effects in layered magnetic semiconductors.

Download