Do you want to publish a course? Click here

Opportunistic Federated Learning: An Exploration of Egocentric Collaboration for Pervasive Computing Applications

59   0   0.0 ( 0 )
 Added by Sang Su Lee
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Pervasive computing applications commonly involve users personal smartphones collecting data to influence application behavior. Applications are often backed by models that learn from the users experiences to provide personalized and responsive behavior. While models are often pre-trained on massive datasets, federated learning has gained attention for its ability to train globally shared models on users private data without requiring the users to share their data directly. However, federated learning requires devices to collaborate via a central server, under the assumption that all users desire to learn the same model. We define a new approach, opportunistic federated learning, in which individual devices belonging to different users seek to learn robust models that are personalized to their users own experiences. However, instead of learning in isolation, these models opportunistically incorporate the learned experiences of other devices they encounter opportunistically. In this paper, we explore the feasibility and limits of such an approach, culminating in a framework that supports encounter-based pairwise collaborative learning. The use of our opportunistic encounter-based learning amplifies the performance of personalized learning while resisting overfitting to encountered data.



rate research

Read More

149 - Wei Liu , Li Chen , 2021
Decentralized federated learning (DFL) is a powerful framework of distributed machine learning and decentralized stochastic gradient descent (SGD) is a driving engine for DFL. The performance of decentralized SGD is jointly influenced by communication-efficiency and convergence rate. In this paper, we propose a general decentralized federated learning framework to strike a balance between communication-efficiency and convergence performance. The proposed framework performs both multiple local updates and multiple inter-node communications periodically, unifying traditional decentralized SGD methods. We establish strong convergence guarantees for the proposed DFL algorithm without the assumption of convex objective function. The balance of communication and computation rounds is essential to optimize decentralized federated learning under constrained communication and computation resources. For further improving communication-efficiency of DFL, compressed communication is applied to DFL, named DFL with compressed communication (C-DFL). The proposed C-DFL exhibits linear convergence for strongly convex objectives. Experiment results based on MNIST and CIFAR-10 datasets illustrate the superiority of DFL over traditional decentralized SGD methods and show that C-DFL further enhances communication-efficiency.
Federated learning (FL) is a distributed deep learning method which enables multiple participants, such as mobile phones and IoT devices, to contribute a neural network model while their private training data remains in local devices. This distributed approach is promising in the edge computing system where have a large corpus of decentralized data and require high privacy. However, unlike the common training dataset, the data distribution of the edge computing system is imbalanced which will introduce biases in the model training and cause a decrease in accuracy of federated learning applications. In this paper, we demonstrate that the imbalanced distributed training data will cause accuracy degradation in FL. To counter this problem, we build a self-balancing federated learning framework call Astraea, which alleviates the imbalances by 1) Global data distribution based data augmentation, and 2) Mediator based multi-client rescheduling. The proposed framework relieves global imbalance by runtime data augmentation, and for averaging the local imbalance, it creates the mediator to reschedule the training of clients based on Kullback-Leibler divergence (KLD) of their data distribution. Compared with FedAvg, the state-of-the-art FL algorithm, Astraea shows +5.59% and +5.89% improvement of top-1 accuracy on the imbalanced EMNIST and imbalanced CINIC-10 datasets, respectively. Meanwhile, the communication traffic of Astraea can be 82% lower than that of FedAvg.
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) projects without sharing sensitive data, such as, patient records, financial data, or classified secrets. Open Federated Learning (OpenFL https://github.com/intel/openfl) is an open-source framework for training ML algorithms using the data-private collaborative learning paradigm of FL. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and deep learning frameworks. Here, we summarize the motivation and development characteristics of OpenFL, with the intention of facilitating its application to existing ML model training in a production environment. Finally, we describe the first use of the OpenFL framework to train consensus ML models in a consortium of international healthcare organizations, as well as how it facilitates the first computational competition on FL.
In the paper, we propose an effective and efficient Compositional Federated Learning (ComFedL) algorithm for solving a new compositional Federated Learning (FL) framework, which frequently appears in many machine learning problems with a hierarchical structure such as distributionally robust federated learning and model-agnostic meta learning (MAML). Moreover, we study the convergence analysis of our ComFedL algorithm under some mild conditions, and prove that it achieves a fast convergence rate of $O(frac{1}{sqrt{T}})$, where $T$ denotes the number of iteration. To the best of our knowledge, our algorithm is the first work to bridge federated learning with composition stochastic optimization. In particular, we first transform the distributionally robust FL (i.e., a minimax optimization problem) into a simple composition optimization problem by using KL divergence regularization. At the same time, we also first transform the distribution-agnostic MAML problem (i.e., a minimax optimization problem) into a simple composition optimization problem. Finally, we apply two popular machine learning tasks, i.e., distributionally robust FL and MAML to demonstrate the effectiveness of our algorithm.
Federated learning allows distributed devices to collectively train a model without sharing or disclosing the local dataset with a central server. The global model is optimized by training and averaging the model parameters of all local participants. However, the improved privacy of federated learning also introduces challenges including higher computation and communication costs. In particular, federated learning converges slower than centralized training. We propose the server averaging algorithm to accelerate convergence. Sever averaging constructs the shared global model by periodically averaging a set of previous global models. Our experiments indicate that server averaging not only converges faster, to a target accuracy, than federated averaging (FedAvg), but also reduces the computation costs on the client-level through epoch decay.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا