The Third Way to Interacting $p$-form Theories


Abstract in English

We construct a class of interacting $(d-2)$-form theories in $d$ dimensions that are `third way consistent. This refers to the fact that the interaction terms in the $p$-form field equations of motion neither come from the variation of an action nor are they off-shell conserved on their own. Nevertheless the full equation is still on-shell consistent. Various generalizations, e.g. coupling them to $(d-3)$-forms, where 3-algebras play a prominent role, are also discussed. The method to construct these models also easily recovers the modified 3$d$ Yang-Mills theory obtained earlier and straightforwardly allows for higher derivative extensions.

Download