We consider a sequence of four variable polynomials by refining Stieltjes continued fraction for Eulerian polynomials. Using combinatorial theory of Jacobi-type continued fractions and bijections we derive various combinatorial interpretations in terms of permutation statistics for these polynomials, which include special kinds of descents and excedances in a recent paper of Baril and Kirgizov. As a by-product, we derive several equidistribution results for permutation statistics, which enables us to confirm and strengthen a recent conjecture of Vajnovszki and also to obtain several compagnion permutation statistics for two bistatistics in a conjecture of Baril and Kirgizov.