Do you want to publish a course? Click here

Metallicity-dependent wind parameter predictions for OB stars

220   0   0.0 ( 0 )
 Added by Jorick S. Vink
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mass-loss rates and terminal wind velocities are key parameters that determine the kinetic wind energy and momenta of massive stars. Furthermore, accurate mass-loss rates determine the mass and rotational velocity evolution of mass stars, and their fates as neutron stars and black holes in function of metallicity (Z). Here we update our Monte Carlo mass-loss Recipe with new dynamically-consistent computations of the terminal wind velocity -- as a function of Z. These predictions are particularly timely as the HST ULLYSES project will observe ultraviolet spectra with blue-shifted P Cygni lines of hundreds of massive stars in the low-Z Large and Small Magellanic Clouds, as well as sub-SMC metallicity hosts. Around 35 000 K, we uncover a weak-wind dip and we present diagnostics to investigate its physics with ULLYSES and X-Shooter data. We discuss how the dip may provide important information on wind-driving physics, and how this is of key relevance towards finding a new gold-standard for OB star mass-loss rates. For B supergiants below the Fe IV to III bi-stability jump, the terminal velocity is found to be independent of Z and M, while the mass-loss rate still varies as $dot{M} propto Z^{0.85}$. For O-type stars above the bi-stability jump we find a terminal-velocity dependence of $v_{infty} propto Z^{0.19}$ and the Z-dependence of the mass-loss rate is found to be as shallow as $dot{M} propto Z^{0.42}$, implying that to reproduce the `heavy black holes from LIGO/VIRGO, the `low Z requirement becomes even more stringent than was previously anticipated.



rate research

Read More

Infrared imaging of the colliding-wind binary Apep has revealed a spectacular dust plume with complicated internal dynamics that challenges standard colliding-wind binary physics. Such challenges can be potentially resolved if a rapidly-rotating Wolf-Rayet star is located at the heart of the system, implicating Apep as a Galactic progenitor system to long-duration gamma-ray bursts. One of the difficulties in interpreting the dynamics of Apep is that the spectral composition of the stars in the system was unclear. Here we present visual to near-infrared spectra that demonstrate that the central component of Apep is composed of two classical Wolf-Rayet stars of carbon- (WC8) and nitrogen-sequence (WN4-6b) subtypes. We argue that such an assignment represents the strongest case of a classical WR+WR binary system in the Milky Way. The terminal line-of-sight wind velocities of the WC8 and WN4-6b stars are measured to be $2100 pm 200$ and $3500 pm 100$ km s$^{-1}$, respectively. If the mass-loss rate of the two stars are typical for their spectral class, the momentum ratio of the colliding winds is expected to be $approx$ 0.4. Since the expansion velocity of the dust plume is significantly smaller than either of the measured terminal velocities, we explore the suggestion that one of the Wolf-Rayet winds is anisotropic. We can recover a shock-compressed wind velocity consistent with the observed dust expansion velocity if the WC8 star produces a significantly slow equatorial wind with a velocity of $approx$530 km s$^{-1}$. Such slow wind speeds can be driven by near-critical rotation of a Wolf-Rayet star.
The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. We wish to investigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B = 5, 10, and 20 muG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 muG interstellar magnetic field and a 10,000 K interstellar medium and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influence the morphology of the circumstellar bubbles. Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with a warm, high-density ISM the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble. The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble.
101 - Curtis Struck 2020
Bow-shaped mid-infrared emission regions have been discovered in satellite observations of numerous late-type O and early-type B stars with moderate velocities relative to the ambient interstellar medium. Previously, hydrodynamical bow shock models have been used to study this emission. It appears that such models are incomplete in that they neglect kinetic effects associated with long mean free paths of stellar wind particles, and the complexity of Weibel instability fronts. Wind ions are scattered in the Weibel instability and mix with the interstellar gas. However, they do not lose their momentum and most ultimately diffuse further into the ambient gas like cosmic rays, and share their energy and momentum. Lacking other coolants, the heated gas transfers energy to interstellar dust grains, which radiate it. This process, in addition to grain photo-heating, provides the energy for the emission. A weak R-type ionization front, formed well outside the infrared emission region, generally moderates the interstellar gas flow into the emission region. The theory suggests that the infrared emission process is limited to cases of moderate stellar peculiar velocities, evidently in accord with the observations.
Ultra-precise astrometry from the Gaia mission is expected to lead to astrometric detections of more than 20,000 exoplanets in our Galaxy. One of the factors that could hamper such detections is the astrometric jitter caused by the magnetic activity of the planet host stars. In our previous study, we modeled astrometric jitter for the Sun observed equator-on. In this work, we generalize our model and calculate the photocenter jitter as it would be measured by the Gaia and Small-JASMINE missions for stars with solar rotation rate and effective temperature, but with various values of the inclination angle of the stellar rotation axis. In addition, we consider the effect of metallicity and of nesting of active regions (i.e. the tendency of active regions to emerge in the vicinity of each other). We find that, while the jitter of stars observed equator-on does not have any long-term trends and can be easily filtered out, the photocenters of stars observed out of their equatorial planes experience systematic shifts over the course of the activity cycle. Such trends allow the jitter to be detected with continuous measurements, in which case it can interfere with planet detectability. An increase in the metallicity is found to increase the jitter caused by stellar activity. Active-region nesting can further enhance the peak-to-peak amplitude of the photocenter jitter to a level that could be detected by Gaia.
For application to surveys of interstellar matter and Galactic structure, we compute new spectrophotometric distances to 139 OB stars frequently used as background targets for UV spectroscopy. Many of these stars have updated spectral types and digital photometry with reddening corrections from the Galactic O-Star (GOS) spectroscopic survey. We compare our new photometric distances to values used in previous IUE and FUSE surveys and to parallax distances derived from Gaia-DR2, after applying a standard (0.03 mas) offset from the quasar celestial reference frame. We find substantial differences between photometric and parallax distances (at d > 1.5 kpc) with increasing dispersion when parallax errors exceed 8%. Differences from previous surveys arise from new GOS stellar classifications, especially luminosity classes, and from reddening corrections. We apply our methods to two OB associations. For Perseus OB1 (nine O-stars) we find mean distances of $2.47pm0.57$ kpc (Gaia parallax) and $2.99pm0.14$ kpc (photometric) using a standard grid of absolute magnitudes (Bowen et al. 2008). For 29 O-stars in Car OB1 associated with Trumpler-16, Trumpler-14, Trumpler-15, and Collinder-228 star clusters, we find $2.87pm0.73$ kpc (Gaia parallax) and $2.60pm0.28$ kpc (photometric). Using an alternative grid of O-star absolute magnitudes (Martins et al. 2005) shifts these photometric distances 7% closer. Improving the distances to OB-stars will require attention to spectral types, photometry, reddening, binarity, and the grid of absolute magnitudes. We anticipate that future measurements in Gaia-DR3 will improve the precision of distances to massive star-forming regions in the Milky Way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا