No Arabic abstract
We present an updated cosmic-ray mass composition analysis in the energy range $10^{16.8}$ to $10^{18.3}$ eV from 334 air showers measured with the LOFAR radio telescope, and selected for minimal bias. In this energy range, the origin of cosmic rays is expected to shift from galactic to extragalactic sources. The analysis is based on an improved method to infer the depth of maximum $X_{rm max}$ of extensive air showers from radio measurements and air shower simulations. We show results of the average and standard deviation of $X_{rm max}$ versus primary energy, and analyze the $X_{rm max}$-dataset at distribution level to estimate the cosmic ray mass composition. Our approach uses an unbinned maximum likelihood analysis, making use of existing parametrizations of $X_{rm max}$-distributions per element. The analysis has been repeated for three main models of hadronic interactions. Results are consistent with a significant light-mass fraction, at best fit $23$ to $39$ $%$ protons plus helium, depending on the choice of hadronic interaction model. The fraction of intermediate-mass nuclei dominates. This confirms earlier results from LOFAR, with systematic uncertainties on $X_{rm max}$ now lowered to 7 to $9$ $mathrm{g/cm^2}$. We find agreement in mass composition compared to results from Pierre Auger Observatory, within statistical and systematic uncertainties. However, in line with earlier LOFAR results, we find a slightly lower average $X_{rm max}$. The values are in tension with those found at Pierre Auger Observatory, but agree with results from other cosmic ray observatories based in the Northern hemisphere.
LOFAR (the Low Frequency Array), a distributed digital radio telescope with stations in the Netherlands, Germany, France, Sweden, and the United Kingdom, is designed to enable full-sky monitoring of transient radio sources. These capabilities are ideal for the detection of broadband radio pulses generated in cosmic ray air showers. The core of LOFAR consists of 24 stations within 4 square kilometers, and each station contains 96 low-band antennas and 48 high-band antennas. This dense instrumentation will allow detailed studies of the lateral distribution of the radio signal in a frequency range of 10-250 MHz. Such studies are key to understanding the various radio emission mechanisms within the air shower, as well as for determining the potential of the radio technique for primary particle identification. We present the status of the LOFAR cosmic ray program, including the station design and hardware, the triggering and filtering schemes, and our initial observations of cosmic-ray-induced radio pulses.
The composition of ultra-high energy cosmic rays is an important issue in astroparticle physics research, and additional experimental results are required for further progress. Here we investigate what can be learned from the statistical correlation factor r between the depth of shower maximum and the muon shower size, when these observables are measured simultaneously for a set of air showers. The correlation factor r contains the lowest-order moment of a two-dimensional distribution taking both observables into account, and it is independent of systematic uncertainties of the absolute scales of the two observables. We find that, assuming realistic measurement uncertainties, the value of r can provide a measure of the spread of masses in the primary beam. Particularly, one can differentiate between a well-mixed composition (i.e., a beam that contains large fractions of both light and heavy primaries) and a relatively pure composition (i.e., a beam that contains species all of a similar mass). The number of events required for a statistically significant differentiation is ~ 200. This differentiation, though diluted, is maintained to a significant extent in the presence of uncertainties in the phenomenology of high energy hadronic interactions. Testing whether the beam is pure or well-mixed is well motivated by recent measurements of the depth of shower maximum.
We report on a measurement of the cosmic ray composition by the Telescope Array Low-Energy Extension (TALE) air fluorescence detector (FD). By making use of the Cherenkov light signal in addition to air fluorescence light from cosmic ray (CR) induced extensive air showers, the TALE FD can measure the properties of the cosmic rays with energies as low as $sim 2$ PeV and exceeding 1 EeV. In this paper, we present results on the measurement of $X_{rm max}$ distributions of showers observed over this energy range. Data collected over a period of $sim 4$ years was analyzed for this study. The resulting $X_{rm max}$ distributions are compared to the Monte Carlo (MC) simulated data distributions for primary cosmic rays with varying composition and a 4-component fit is performed. The comparison and fit are performed for energy bins, of width 0.1 or 0.2 in $log_{10} (E/{rm eV})$, spanning the full range of the measured energies. We also examine the mean $X_{rm max}$ value as a function of energy for cosmic rays with energies greater than $10^{15.8}$ eV. Below $10^{17.3}$ eV, the slope of the mean $X_{rm max}$ as a function of energy (the elongation rate) for the data is significantly smaller than that of all elements in the models, indicating that the composition is becoming heavier with energy in this energy range. This is consistent with a rigidity-dependent cutoff of events from galactic sources. Finally, an increase in the $X_{rm max}$ elongation rate is observed at energies just above $10^{17}$ eV indicating another change in the cosmic rays composition.
The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first $sim 2,mathrm{years}$ of observing, 405 cosmic-ray events in the energy range of $10^{16} - 10^{18},mathrm{eV}$ have been detected in the band from $30 - 80,mathrm{MHz}$. Each of these air showers is registered with up to $sim1000$ independent antennas resulting in measurements of the radio emission with unprecedented detail. This article describes the dataset, as well as the analysis pipeline, and serves as a reference for future papers based on these data. All steps necessary to achieve a full reconstruction of the electric field at every antenna position are explained, including removal of radio frequency interference, correcting for the antenna response and identification of the pulsed signal.
The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and give estimators for the energy of the air shower as well as the distance to the shower maximum.