Do you want to publish a course? Click here

Characterization and suppression of background light shifts in an optical lattice clock

74   0   0.0 ( 0 )
 Added by Robert Fasano
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Experiments involving optical traps often require careful control of the ac Stark shifts induced by strong confining light fields. By carefully balancing light shifts between two atomic states of interest, optical traps at the magic wavelength have been especially effective at suppressing deleterious effects stemming from such shifts. Highlighting the power of this technique, optical clocks today exploit Lamb-Dicke confinement in magic-wavelength optical traps, in some cases realizing shift cancellation at the ten parts per billion level. Theory and empirical measurements can be used at varying levels of precision to determine the magic wavelength where shift cancellation occurs. However, lasers exhibit background spectra from amplified spontaneous emission or other lasing modes which can easily contaminate measurement of the magic wavelength and its reproducibility in other experiments or conditions. Indeed, residual light shifts from laser background have plagued optical lattice clock measurements for years. In this work, we develop a simple theoretical model allowing prediction of light shifts from measured background spectra. We demonstrate good agreement between this model and measurements of the background light shift from an amplified diode laser in an Yb optical lattice clock. Additionally, we model and experimentally characterize the filtering effect of a volume Bragg grating bandpass filter, demonstrating that application of the filter can reduce background light shifts from amplified spontaneous emission well below the $10^{-18}$ fractional clock frequency level. This demonstration is corroborated by direct clock comparisons between a filtered amplified diode laser and a filtered titanium:sapphire laser.



rate research

Read More

We demonstrate a new method of cavity-enhanced non-destructive detection of atoms for a strontium optical lattice clock. The detection scheme is shown to be linear in atom number up to at least 10,000 atoms, to reject technical noise sources, to achieve signal to noise ratio close to the photon shot noise limit, to provide spatially uniform atom-cavity coupling, and to minimize inhomogeneous ac Stark shifts. These features enable detection of atoms with minimal perturbation to the atomic state, a critical step towards realizing an ultra-high-stability, quantum-enhanced optical lattice clock.
We develop a model to describe the motional (i.e., external degree of freedom) energy spectra of atoms trapped in a one-dimensional optical lattice, taking into account both axial and radial confinement relative to the lattice axis. Our model respects the coupling between axial and radial degrees of freedom, as well as other anharmonicities inherent in the confining potential. We further demonstrate how our model can be used to characterize lattice light shifts in optical lattice clocks, including shifts due to higher multipolar (magnetic dipole and electric quadrupole) and higher order (hyperpolarizability) coupling to the lattice field. We compare results for our model with results from other lattice light shift models in the literature under similar conditions.
Optical frequency comparison of the 40Ca+ clock transition u_{Ca} (2S1/2-2D5/2, 729nm) against the 87Sr optical lattice clock transition u_{Sr}(1S0-3P0, 698nm) has resulted in a frequency ratio u_{Ca} / u_{Sr} = 0.957 631 202 358 049 9(2 3). The rapid nature of optical comparison allowed the statistical uncertainty of frequency ratio u_{Ca} / u_{Sr} to reach 1x10-15 in only 1000s and yielded a value consistent with that calculated from separate absolute frequency measurements of u_{Ca} using the International Atomic Time (TAI) link. The total uncertainty of the frequency ratio using optical comparison (free from microwave link uncertainties) is smaller than that obtained using absolute frequency measurement, demonstrating the advantage of optical frequency evaluation. We report the absolute frequency of ^{40}Ca+ with a systematic uncertainty 14 times smaller than our previous measurement [1].
Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an $^{171}$Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an operational magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the $10^{-18}$ level and beyond.
Recently, p-wave cold collisions were shown to dominate the density-dependent shift of the clock transition frequency in a 171Yb optical lattice clock. Here we demonstrate that by operating such a system at the proper excitation fraction, the cold collision shift is canceled below the 5x10^{-18} fractional frequency level. We report inelastic two-body loss rates for 3P0-3P0 and 1S0-3P0 scattering. We also measure interaction shifts in an unpolarized atomic sample. Collision measurements for this spin-1/2 171Yb system are relevant for high performance optical clocks as well as strongly-interacting systems for quantum information and quantum simulation applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا