Photoinduced dynamics of organic molecules using nonequilibrium Greens functions with second-Born, $GW$, $T$-matrix and three-particle ladder correlations


Abstract in English

The ultrafast hole dynamics triggered by the photoexcitation of molecular targets is a highly correlated process even for those systems, like organic molecules, having a weakly correlated ground state. We here provide a unifying framework and a numerically efficient matrix formulation of state-of-the-art non-equilibrium Greens function (NEGF) methods like second-Born as well as $GW$ and $T$-matrix without and {em with} exchange diagrams. Numerical simulations are presented for a paradigmatic, exactly solvable molecular system and the shortcomings of the established NEGF methods are highlighted. We then develop a NEGF scheme based on the Faddeev treatment of three-particle correlations; the exceptional improvement over established methods is explained and demonstrated. The Faddeev NEGF scheme scales linearly with the maximum propagation time, thereby opening prospects for femtosecond simulations of large molecules.

Download