Do you want to publish a course? Click here

Regularized Softmax Deep Multi-Agent $Q$-Learning

173   0   0.0 ( 0 )
 Added by Ling Pan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Tackling overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning, but has received comparatively little attention in the multi-agent setting. In this work, we empirically demonstrate that QMIX, a popular $Q$-learning algorithm for cooperative multi-agent reinforcement learning (MARL), suffers from a more severe overestimation in practice than previously acknowledged, and is not mitigated by existing approaches. We rectify this with a novel regularization-based update scheme that penalizes large joint action-values that deviate from a baseline and demonstrate its effectiveness in stabilizing learning. Furthermore, we propose to employ a softmax operator, which we efficiently approximate in a novel way in the multi-agent setting, to further reduce the potential overestimation bias. Our approach, Regularized Softmax (RES) Deep Multi-Agent $Q$-Learning, is general and can be applied to any $Q$-learning based MARL algorithm. We demonstrate that, when applied to QMIX, RES avoids severe overestimation and significantly improves performance, yielding state-of-the-art results in a variety of cooperative multi-agent tasks, including the challenging StarCraft II micromanagement benchmarks.

rate research

Read More

Centralized training with decentralized execution has become an important paradigm in multi-agent learning. Though practical, current methods rely on restrictive assumptions to decompose the centralized value function across agents for execution. In this paper, we eliminate this restriction by proposing multi-agent determinantal Q-learning. Our method is established on Q-DPP, an extension of determinantal point process (DPP) with partition-matroid constraint to multi-agent setting. Q-DPP promotes agents to acquire diverse behavioral models; this allows a natural factorization of the joint Q-functions with no need for emph{a priori} structural constraints on the value function or special network architectures. We demonstrate that Q-DPP generalizes major solutions including VDN, QMIX, and QTRAN on decentralizable cooperative tasks. To efficiently draw samples from Q-DPP, we adopt an existing sample-by-projection sampler with theoretical approximation guarantee. The sampler also benefits exploration by coordinating agents to cover orthogonal directions in the state space during multi-agent training. We evaluate our algorithm on various cooperative benchmarks; its effectiveness has been demonstrated when compared with the state-of-the-art.
In multi-agent reinforcement learning, discovering successful collective behaviors is challenging as it requires exploring a joint action space that grows exponentially with the number of agents. While the tractability of independent agent-wise exploration is appealing, this approach fails on tasks that require elaborate group strategies. We argue that coordinating the agents policies can guide their exploration and we investigate techniques to promote such an inductive bias. We propose two policy regularization methods: TeamReg, which is based on inter-agent action predictability and CoachReg that relies on synchronized behavior selection. We evaluate each approach on four challenging continuous control tasks with sparse rewards that require varying levels of coordination as well as on the discrete action Google Research Football environment. Our experiments show improved performance across many cooperative multi-agent problems. Finally, we analyze the effects of our proposed methods on the policies that our agents learn and show that our methods successfully enforce the qualities that we propose as proxies for coordinated behaviors.
Deep reinforcement learning (RL) is a powerful framework to train decision-making models in complex dynamical environments. However, RL can be slow as it learns through repeated interaction with a simulation of the environment. Accelerating RL requires both algorithmic and engineering innovations. In particular, there are key systems engineering bottlenecks when using RL in complex environments that feature multiple agents or high-dimensional state, observation, or action spaces, for example. We present WarpDrive, a flexible, lightweight, and easy-to-use open-source RL framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit), building on PyCUDA and PyTorch. Using the extreme parallelization capability of GPUs, WarpDrive enables orders-of-magnitude faster RL compared to common implementations that blend CPU simulations and GPU models. Our design runs simulations and the agents in each simulation in parallel. It eliminates data copying between CPU and GPU. It also uses a single simulation data store on the GPU that is safely updated in-place. Together, this allows the user to run thousands of concurrent multi-agent simulations and train on extremely large batches of experience. For example, WarpDrive yields 2.9 million environment steps/second with 2000 environments and 1000 agents (at least 100x higher throughput compared to a CPU implementation) in a benchmark Tag simulation. WarpDrive provides a lightweight Python interface and environment wrappers to simplify usage and promote flexibility and extensions. As such, WarpDrive provides a framework for building high-throughput RL systems.
94 - Shenao Zhang , Li Shen , Lei Han 2021
In multi-agent reinforcement learning, the behaviors that agents learn in a single Markov Game (MG) are typically confined to the given agent number (i.e., population size). Every single MG induced by varying population sizes may possess distinct optimal joint strategies and game-specific knowledge, which are modeled independently in modern multi-agent algorithms. In this work, we focus on creating agents that generalize across population-varying MGs. Instead of learning a unimodal policy, each agent learns a policy set that is formed by effective strategies across a variety of games. We propose Meta Representations for Agents (MRA) that explicitly models the game-common and game-specific strategic knowledge. By representing the policy sets with multi-modal latent policies, the common strategic knowledge and diverse strategic modes are discovered with an iterative optimization procedure. We prove that as an approximation to a constrained mutual information maximization objective, the learned policies can reach Nash Equilibrium in every evaluation MG under the assumption of Lipschitz game on a sufficiently large latent space. When deploying it at practical latent models with limited size, fast adaptation can be achieved by leveraging the first-order gradient information. Extensive experiments show the effectiveness of MRA on both training performance and generalization ability in hard and unseen games.
223 - Meng Zhou , Ziyu Liu , Pengwei Sui 2020
We present a multi-agent actor-critic method that aims to implicitly address the credit assignment problem under fully cooperative settings. Our key motivation is that credit assignment among agents may not require an explicit formulation as long as (1) the policy gradients derived from a centralized critic carry sufficient information for the decentralized agents to maximize their joint action value through optimal cooperation and (2) a sustained level of exploration is enforced throughout training. Under the centralized training with decentralized execution (CTDE) paradigm, we achieve the former by formulating the centralized critic as a hypernetwork such that a latent state representation is integrated into the policy gradients through its multiplicative association with the stochastic policies; to achieve the latter, we derive a simple technique called adaptive entropy regularization where magnitudes of the entropy gradients are dynamically rescaled based on the current policy stochasticity to encourage consistent levels of exploration. Our algorithm, referred to as LICA, is evaluated on several benchmarks including the multi-agent particle environments and a set of challenging StarCraft II micromanagement tasks, and we show that LICA significantly outperforms previous methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا