No Arabic abstract
In order to exhume the buried signatures of ``missing planetary caustics in the KMTNet data, we conducted a systematic anomaly search to the residuals from point-source point-lens fits, based on a modified version of the KMTNet EventFinder algorithm. This search reveals the lowest mass-ratio planetary caustic to date in the microlensing event OGLE-2019-BLG-1053, for which the planetary signal had not been noticed before. The planetary system has a planet-host mass ratio of $q = (1.25 pm 0.13) times 10^{-5}$. A Bayesian analysis yields estimates of the mass of the host star, $M_{rm host} = 0.61_{-0.24}^{+0.29}~M_odot$, the mass of its planet, $M_{rm planet} = 2.48_{-0.98}^{+1.19}~M_{oplus}$, the projected planet-host separation, $a_perp = 3.4_{-0.5}^{+0.5}$ au, and the lens distance of $D_{rm L} = 6.8_{-0.9}^{+0.6}$ kpc. The discovery of this very low mass-ratio planet illustrates the utility of our method and opens a new window for a large and homogeneous sample to study the microlensing planet-host mass-ratio function down to $q sim 10^{-5}$.
We report the analysis of OGLE-2019-BLG-0960, which contains the smallest mass-ratio microlensing planet found to date (q = 1.2--1.6 x 10^{-5} at 1-sigma). Although there is substantial uncertainty in the satellite parallax measured by Spitzer, the measurement of the annual parallax effect combined with the finite source effect allows us to determine the mass of the host star (M_L = 0.3--0.6 M_Sun), the mass of its planet (m_p = 1.4--3.1 M_Earth), the projected separation between the host and planet (a_perp = 1.2--2.3 au), and the distance to the lens system (D_L = 0.6--1.2 kpc). The lens is plausibly the blend, which could be checked with adaptive optics observations. As the smallest planet clearly below the break in the mass-ratio function (Suzuki et al. 2016; Jung et al. 2019), it demonstrates that current experiments are powerful enough to robustly measure the slope of the mass-ratio function below that break. We find that the cross-section for detecting small planets is maximized for planets with separations just outside of the boundary for resonant caustics and that sensitivity to such planets can be maximized by intensively monitoring events whenever they are magnified by a factor A > 5. Finally, an empirical investigation demonstrates that most planets showing a degeneracy between (s > 1) and (s < 1) solutions are not in the regime (|log s| >> 0) for which the close/wide degeneracy was derived. This investigation suggests a link between the close/wide and inner/outer degeneracies and also that the symmetry in the lens equation goes much deeper than symmetries uncovered for the limiting cases.
We apply the automated AnomalyFinder algorithm of Paper I (Zang et al. 2021b) to 2018-2019 light curves from the $simeq 13,{rm deg}^2$ covered by the six KMTNet prime fields, with cadences $Gamma geq 2,{rm hr}^{-1}$. We find a total of 10 planets with mass ratios $q<2times 10^{-4}$, including five newly discovered planets, one planet that was reported in Paper I, and recovery of four previously discovered planets. One of the new planets, OGLE-2018-BLG-0977Lb, is in a planetary-caustic event, while the other four (OGLE-2018-BLG-0506Lb, OGLE-2018-BLG-0516Lb, OGLE-2019-BLG-1492Lb, and KMT-2019-BLG-0253) are revealed by a ``dip in the light curve as the source crosses the host-planet axis on the opposite side of the planet. These subtle signals were missed in previous by-eye searches. The planet-host separations (scaled to the Einstein radius), $s$, and planet-host mass ratios, $q$, are, respectively, $(s,qtimes 10^5) = (0.88, 4.1)$, $(0.96pm 0.10, 8.3)$, $(0.94pm 0.07, 13)$, $(0.97pm 0.07, 18)$, and $(0.97pm0.04,4.1)$, where the ``$pm$ indicates a discrete degeneracy. The ten planets are spread out over the range $-5<log q < -3.7$. Together with the two planets previously reported with $qsim 10^{-5}$ from the 2018-2019 non-prime KMT fields, this result suggests that planets toward the bottom of this mass-ratio range may be more common than previously believed.
High-cadence observations of the Galactic bulge by the microlensing surveys led to the discovery of a handful of extremely short-timescale microlensing events that can be attributed to free-floating or wide-orbit planets. Here, we report the discovery of another strong free-floating planet candidate, which was found from the analysis of the gravitational microlensing event OGLE-2019-BLG-0551. The light curve of the event is characterized by a very short duration (<3 d) and a very small amplitude (< 0.1 mag). From modeling of the light curve, we find that the Einstein timescale, tE = 0.381 +/- 0.017 d, is much shorter, and the angular Einstein radius, thetaE = 4.35 +/- 0.34 uas, is much smaller than those of typical lensing events produced by stellar-mass lenses (tE ~ 20 d, thetaE ~ 0.3 mas), indicating that the lens is very likely to be a planetary-mass object. We conduct an extensive search for possible signatures of a companion star in the light curve of the event, finding no significant evidence for the putative host star. For the first time, we also demonstrate that the angular Einstein radius of the lens does not depend on blending in the low-magnification events with strong finite source effects.
We analyze the microlensing event OGLE-2019-BLG-0304, whose light curve exhibits two distinctive features: a deviation in the peak region and a second bump appearing $sim 61$~days after the main peak. Although a binary-lens model can explain the overall features, it leaves subtle but noticeable residuals in the peak region. We find that the residuals can be explained by the presence of either a planetary companion located close to the primary of the binary lens (3L1S model) or an additional close companion to the source (2L2S model). Although the 3L1S model is favored over the 2L2S model, with $Deltachi^2sim 8$, securely resolving the degeneracy between the two models is difficult with the currently available photometric data. According to the 3L1S interpretation, the lens is a planetary system, in which a planet with a mass $0.51^{+0.51}_{-0.23}~M_{rm J}$ is in an S-type orbit around a binary composed of stars with masses $0.27^{+0.27}_{-0.12}~M_odot$ and $0.10^{+0.10}_{-0.04}~M_odot$. According to the 2L2S interpretation, on the other hand, the source is composed of G- and K-type giant stars, and the lens is composed of a low-mass M dwarf and a brown dwarf with masses $0.12^{+0.12}_{-0.05}~M_odot$ and $0.045^{+0.045}_{-.019}~M_odot$, respectively. The event illustrates the need for through model testing in the interpretation of lensing events with complex features in light curves.
We present the analyses of two microlensing events, OGLE-2018-BLG-0567 and OGLE-2018-BLG-0962. In both events, the short-lasting anomalies were densely and continuously covered by two high-cadence surveys. The light-curve modeling indicates that the anomalies are generated by source crossings over the planetary caustics induced by planetary companions to the hosts. The estimated planet/host separation (scaled to the angular Einstein radius $theta_{rm E}$) and mass ratio are $(s, q) = (1.81, 1.24times10^{-3})$ and $(s, q) = (1.25, 2.38times10^{-3})$, respectively. From Bayesian analyses, we estimate the host and planet masses as $(M_{rm h}, M_{rm p}) = (0.24_{-0.13}^{+0.16},M_{odot}, 0.32_{-0.16}^{+0.34},M_{rm J})$ and $(M_{rm h}, M_{rm p}) = (0.55_{-0.29}^{+0.32},M_{odot}, 1.37_{-0.72}^{+0.80},M_{rm J})$, respectively. These planetary systems are located at a distance of $7.07_{-1.15}^{+0.93},{rm kpc}$ for OGLE-2018-BLG-0567 and $6.47_{-1.73}^{+1.04},{rm kpc}$ for OGLE-2018-BLG-0962, suggesting that they are likely to be near the Galactic bulge. The two events prove the capability of current high-cadence surveys for finding planets through the planetary-caustic channel. We find that most published planetary-caustic planets are found in Hollywood events in which the source size strongly contributes to the anomaly cross section relative to the size of the caustic.