This paper introduces a new fundamental characteristic, ie, the dynamic range, from real-world metric tools to deep visual recognition. In metrology, the dynamic range is a basic quality of a metric tool, indicating its flexibility to accommodate various scales. Larger dynamic range offers higher flexibility. In visual recognition, the multiple scale problem also exist. Different visual concepts may have different semantic scales. For example, ``Animal and ``Plants have a large semantic scale while ``Elk has a much smaller one. Under a small semantic scale, two different elks may look quite emph{different} to each other . However, under a large semantic scale (eg, animals and plants), these two elks should be measured as being emph{similar}. %We argue that such flexibility is also important for deep metric learning, because different visual concepts indeed correspond to different semantic scales. Introducing the dynamic range to deep metric learning, we get a novel computer vision task, ie, the Dynamic Metric Learning. It aims to learn a scalable metric space to accommodate visual concepts across multiple semantic scales. Based on three types of images, emph{i.e.}, vehicle, animal and online products, we construct three datasets for Dynamic Metric Learning. We benchmark these datasets with popular deep metric learning methods and find Dynamic Metric Learning to be very challenging. The major difficulty lies in a conflict between different scales: the discriminative ability under a small scale usually compromises the discriminative ability under a large one, and vice versa. As a minor contribution, we propose Cross-Scale Learning (CSL) to alleviate such conflict. We show that CSL consistently improves the baseline on all the three datasets. The datasets and the code will be publicly available at https://github.com/SupetZYK/DynamicMetricLearning.