Symmetry-breaking effects of instantons in parton gauge theories


Abstract in English

Compact quantum electrodynamics (CQED$_3$) with Dirac fermionic matter provides an adequate framework for elucidating the universal low-energy physics of a wide variety of (2+1)D strongly correlated systems. Fractionalized states of matter correspond to its deconfined phases, where the gauge field is effectively noncompact, while conventional broken-symmetry phases are associated with confinement triggered by the proliferation of monopole-instantons. While much attention has been devoted lately to the symmetry classification of monopole operators in massless CQED$_3$ and related 3D conformal field theories, explicit derivations of instanton dynamics in parton gauge theories with fermions have been lacking. In this work, we use semiclassical methods analogous to those used by t Hooft in the solution of the $U(1)$ problem in 4D quantum chromodynamics (QCD) to explicitly demonstrate the symmetry-breaking effect of instantons in CQED$_3$ with massive fermions, motivated by a fermionic parton description of hard-core bosons on a lattice. By contrast with the massless case studied by Marston, we find that massive fermions possess Euclidean zero modes exponentially localized to the center of the instanton. Such Euclidean zero modes produce in turn an effective four-fermion interaction -- known as the t Hooft vertex in QCD -- which naturally leads to two possible superfluid phases for the original microscopic bosons: a conventional single-particle condensate or an exotic boson pair condensate without single-particle condensation.

Download