No Arabic abstract
When a finite group freely acts on a topological space, we can define its index and coindex. They roughly measure the size of the given action. We explore the interaction between this index theory and topological dynamics. Given a fixed-point free dynamical system, the set of $p$-periodic points admits a natural free action of $mathbb{Z}/pmathbb{Z}$ for each prime number $p$. We are interested in the growth of its index and coindex as $pto infty$. Our main result shows that there exists a fixed-point free dynamical system having the divergent coindex sequence. This solves a problem posed by [TTY20].
We investigate dynamical analogues of the $L^2$-Betti numbers for modules over integral group ring of a discrete sofic group. In particular, we show that the $L^2$-Betti numbers exactly measure the failure of addition formula for dynamical invariants.
We answer a question of J. Bourgain. We show that the sequence n^2 is L^1-universally bad.
Conley index theory is a very powerful tool in the study of dynamical systems, differential equations and bifurcation theory. In this paper, we make an attempt to generalize the Conley index to discrete random dynamical systems. And we mainly follow the Conley index for maps given by Franks and Richeson in [6]. Furthermore, we simply discuss the relations of isolated invariant sets between time-continuous random dynamical systems and the corresponding time-$h$ maps. For applications we give several examples to illustrate our results.
Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded.
We introduce the notion of Lyapunov exponents for random dynamical systems, conditioned to trajectories that stay within a bounded domain for asymptotically long times. This is motivated by the desire to characterize local dynamical properties in the presence of unbounded noise (when almost all trajectories are unbounded). We illustrate its use in the analysis of local bifurcations in this context. The theory of conditioned Lyapunov exponents of stochastic differential equations builds on the stochastic analysis of quasi-stationary distributions for killed processes and associated quasi-ergodic distributions. We show that conditioned Lyapunov exponents describe the local stability behaviour of trajectories that remain within a bounded domain and - in particular - that negative conditioned Lyapunov exponents imply local synchronisation. Furthermore, a conditioned dichotomy spectrum is introduced and its main characteristics are established.