No Arabic abstract
Adapting a model to perform well on unforeseen data outside its training set is a common problem that continues to motivate new approaches. We demonstrate that application of batch normalization in the output layer, prior to softmax activation, results in improved generalization across visual data domains in a refined ResNet model. The approach adds negligible computational complexity yet outperforms many domain adaptation methods that explicitly learn to align data domains. We benchmark this technique on the Office-Home dataset and show that batch normalization is competitive with other leading methods. We show that this method is not sensitive to presence of source data during adaptation and further present the impact on trained tensor distributions tends toward sparsity. Code is available at https://github.com/matthewbehrend/BNC
We propose a normalization layer for unsupervised domain adaption in semantic scene segmentation. Normalization layers are known to improve convergence and generalization and are part of many state-of-the-art fully-convolutional neural networks. We show that conventional normalization layers worsen the performance of current Unsupervised Adversarial Domain Adaption (UADA), which is a method to improve network performance on unlabeled datasets and the focus of our research. Therefore, we propose a novel Domain Agnostic Normalization layer and thereby unlock the benefits of normalization layers for unsupervised adversarial domain adaptation. In our evaluation, we adapt from the synthetic GTA5 data set to the real Cityscapes data set, a common benchmark experiment, and surpass the state-of-the-art. As our normalization layer is domain agnostic at test time, we furthermore demonstrate that UADA using Domain Agnostic Normalization improves performance on unseen domains, specifically on Apolloscape and Mapillary.
Batch Normalization (BN) is a popular technique for training Deep Neural Networks (DNNs). BN uses scaling and shifting to normalize activations of mini-batches to accelerate convergence and improve generalization. The recently proposed Iterative Normalization (IterNorm) method improves these properties by whitening the activations iteratively using Newtons method. However, since Newtons method initializes the whitening matrix independently at each training step, no information is shared between consecutive steps. In this work, instead of exact computation of whitening matrix at each time step, we estimate it gradually during training in an online fashion, using our proposed Stochastic Whitening Batch Normalization (SWBN) algorithm. We show that while SWBN improves the convergence rate and generalization of DNNs, its computational overhead is less than that of IterNorm. Due to the high efficiency of the proposed method, it can be easily employed in most DNN architectures with a large number of layers. We provide comprehensive experiments and comparisons between BN, IterNorm, and SWBN layers to demonstrate the effectiveness of the proposed technique in conventional (many-shot) image classification and few-shot classification tasks.
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains. Several recent methods use multiple datasets to train models to extract domain-invariant features, hoping to generalize to unseen domains. Instead, first we explicitly train domain-dependant representations by using ad-hoc batch normalization layers to collect independent domains statistics. Then, we propose to use these statistics to map domains in a shared latent space, where membership to a domain can be measured by means of a distance function. At test time, we project samples from an unknown domain into the same space and infer properties of their domain as a linear combination of the known ones. We apply the same mapping strategy at training and test time, learning both a latent representation and a powerful but lightweight ensemble model. We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech.
We present Sandwich Batch Normalization (SaBN), an embarrassingly easy improvement of Batch Normalization (BN) with only a few lines of code changes. SaBN is motivated by addressing the inherent feature distribution heterogeneity that one can be identified in many tasks, which can arise from data heterogeneity (multiple input domains) or model heterogeneity (dynamic architectures, model conditioning, etc.). Our SaBN factorizes the BN affine layer into one shared sandwich affine layer, cascaded by several parallel independent affine layers. Concrete analysis reveals that, during optimization, SaBN promotes balanced gradient norms while still preserving diverse gradient directions: a property that many application tasks seem to favor. We demonstrate the prevailing effectiveness of SaBN as a drop-in replacement in four tasks: $textbf{conditional image generation}$, $textbf{neural architecture search}$ (NAS), $textbf{adversarial training}$, and $textbf{arbitrary style transfer}$. Leveraging SaBN immediately achieves better Inception Score and FID on CIFAR-10 and ImageNet conditional image generation with three state-of-the-art GANs; boosts the performance of a state-of-the-art weight-sharing NAS algorithm significantly on NAS-Bench-201; substantially improves the robust and standard accuracies for adversarial defense; and produces superior arbitrary stylized results. We also provide visualizations and analysis to help understand why SaBN works. Codes are available at https://github.com/VITA-Group/Sandwich-Batch-Normalization.
Despite the successes of deep neural networks on many challenging vision tasks, they often fail to generalize to new test domains that are not distributed identically to the training data. The domain adaptation becomes more challenging for cross-modality medical data with a notable domain shift. Given that specific annotated imaging modalities may not be accessible nor complete. Our proposed solution is based on the cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists and bridge the domain gap in radiological images. We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups. Built upon adversarial training, we propose a learnable self-attentive spatial normalization of the deep convolutional generator networks intermediate activations. Unlike previous attention-based image-to-image translation approaches, which are either domain-specific or require distortion of the source domains structures, we unearth the importance of the auxiliary semantic information to handle the geometric changes and preserve anatomical structures during image translation. We achieve superior results for cross-modality segmentation between unpaired MRI and CT data for multi-modality whole heart and multi-modal brain tumor MRI (T1/T2) datasets compared to the state-of-the-art methods. We also observe encouraging results in cross-modality conversion for paired MRI and CT images on a brain dataset. Furthermore, a detailed analysis of the cross-modality image translation, thorough ablation studies confirm our proposed methods efficacy.