Do you want to publish a course? Click here

Alleviate Exposure Bias in Sequence Prediction with Recurrent Neural Networks

234   0   0.0 ( 0 )
 Added by Liping Yuan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A popular strategy to train recurrent neural networks (RNNs), known as ``teacher forcing takes the ground truth as input at each time step and makes the later predictions partly conditioned on those inputs. Such training strategy impairs their ability to learn rich distributions over entire sequences because the chosen inputs hinders the gradients back-propagating to all previous states in an end-to-end manner. We propose a fully differentiable training algorithm for RNNs to better capture long-term dependencies by recovering the probability of the whole sequence. The key idea is that at each time step, the network takes as input a ``bundle of similar words predicted at the previous step instead of a single ground truth. The representations of these similar words forms a convex hull, which can be taken as a kind of regularization to the input. Smoothing the inputs by this way makes the whole process trainable and differentiable. This design makes it possible for the model to explore more feasible combinations (possibly unseen sequences), and can be interpreted as a computationally efficient approximation to the beam search. Experiments on multiple sequence generation tasks yield performance improvements, especially in sequence-level metrics, such as BLUE or ROUGE-2.

rate research

Read More

When recurrent neural network transducers (RNNTs) are trained using the typical maximum likelihood criterion, the prediction network is trained only on ground truth label sequences. This leads to a mismatch during inference, known as exposure bias, when the model must deal with label sequences containing errors. In this paper we investigate approaches to reducing exposure bias in training to improve the generalization of RNNT models for automatic speech recognition (ASR). A label-preserving input perturbation to the prediction network is introduced. The input token sequences are perturbed using SwitchOut and scheduled sampling based on an additional token language model. Experiments conducted on the 300-hour Switchboard dataset demonstrate their effectiveness. By reducing the exposure bias, we show that we can further improve the accuracy of a high-performance RNNT ASR model and obtain state-of-the-art results on the 300-hour Switchboard dataset.
In this paper we study different types of Recurrent Neural Networks (RNN) for sequence labeling tasks. We propose two new variants of RNNs integrating improvements for sequence labeling, and we compare them to the more traditional Elman and Jordan RNNs. We compare all models, either traditional or new, on four distinct tasks of sequence labeling: two on Spoken Language Understanding (ATIS and MEDIA); and two of POS tagging for the French Treebank (FTB) and the Penn Treebank (PTB) corpora. The results show that our new variants of RNNs are always more effective than the others.
During the last couple of years, Recurrent Neural Networks (RNN) have reached state-of-the-art performances on most of the sequence modelling problems. In particular, the sequence to sequence model and the neural CRF have proved to be very effective in this domain. In this article, we propose a new RNN architecture for sequence labelling, leveraging gated recurrent layers to take arbitrarily long contexts into account, and using two decoders operating forward and backward. We compare several variants of the proposed solution and their performances to the state-of-the-art. Most of our results are better than the state-of-the-art or very close to it and thanks to the use of recent technologies, our architecture can scale on corpora larger than those used in this work.
Exposure bias describes the phenomenon that a language model trained under the teacher forcing schema may perform poorly at the inference stage when its predictions are conditioned on its previous predictions unseen from the training corpus. Recently, several generative adversarial networks (GANs) and reinforcement learning (RL) methods have been introduced to alleviate this problem. Nonetheless, a common issue in RL and GANs training is the sparsity of reward signals. In this paper, we adopt two simple strategies, multi-range reinforcing, and multi-entropy sampling, to amplify and denoise the reward signal. Our model produces an improvement over competing models with regards to BLEU scores and road exam, a new metric we designed to measure the robustness against exposure bias in language models.
Understanding spoken language is a highly complex problem, which can be decomposed into several simpler tasks. In this paper, we focus on Spoken Language Understanding (SLU), the module of spoken dialog systems responsible for extracting a semantic interpretation from the user utterance. The task is treated as a labeling problem. In the past, SLU has been performed with a wide variety of probabilistic models. The rise of neural networks, in the last couple of years, has opened new interesting research directions in this domain. Recurrent Neural Networks (RNNs) in particular are able not only to represent several pieces of information as embeddings but also, thanks to their recurrent architecture, to encode as embeddings relatively long contexts. Such long contexts are in general out of reach for models previously used for SLU. In this paper we propose novel RNNs architectures for SLU which outperform previous ones. Starting from a published idea as base block, we design new deep RNNs achieving state-of-the-art results on two widely used corpora for SLU: ATIS (Air Traveling Information System), in English, and MEDIA (Hotel information and reservation in France), in French.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا