Higher Siegel--Weil formula for unitary groups: the non-singular terms


Abstract in English

We construct special cycles on the moduli stack of unitary shtukas. We prove an identity between (1) the r-th central derivative of non-singular Fourier coefficients of a normalized Siegel--Eisenstein series, and (2) the degree of special cycles of virtual dimension 0 on the moduli stack of unitary shtukas with r legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.

Download