Do you want to publish a course? Click here

Quasinormal modes of a massive scalar field nonminimally coupled to gravity in the spacetime of Self-Dual Black Hole

88   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we investigate the quasinormal modes for a massive scalar field with a nonminimal coupling with gravity in the spacetime of a loop quantum black hole, known as the Self-Dual Black Hole. In this way, we have calculated the characteristic frequencies using the 3rd order WKB approach, where we can verify a strong dependence with the mass of scalar field, the parameter of nonminimal coupling with gravity, and parameters of the Loop Quantum Gravity. From our results, we can check that the Self-Dual Black Hole is stable under the scalar perturbations when assuming small values for the parameters. Also, such results tell us that the quasinormal modes assume different values for the cases where the mass of field is null and the nonminimal coupling assumes $xi=0$ and $xi=1/6$, i.e., a possible breaking of the conformal invariance can be seen in the context of loop quantum black holes.



rate research

Read More

In this paper we investigate quasinormal modes (QNM) for a scalar field around a noncommutative Schwarzschild black hole. We verify the effect of noncommutativity on quasinormal frequencies by applying two procedures widely used in the literature. The first is the Wentzel-Kramers-Brillouin (WKB) approximation up to sixth order. In the second case we use the continuous fraction method developed by Leaver. We find that the quasinormal frequencies obtained for nonzero noncommutative parameter resemble those of the Reissner-Nordstr{o}m geometry. Besides, we also show that due to noncommutativity, the shadow radius is reduced when we increase the noncommutative parameter. In addition, we find that the shadow radius is nonzero even at the zero mass limit for finite noncommutative parameter.
Holography relates the quasinormal modes frequencies of AdS black holes to the pole structure of the dual field theory propagator. These modes thus provide the timescale for the approach to thermal equilibrium in the CFT. Here, we study how such pole structure and, in particular, the time to equilibrium can get modified in the presence of a black hole hair. More precisely, we consider in AdS a set of relaxed boundary conditions that allow for a low decaying graviton mode near the boundary, which triggers an additional degree of freedom. We solve the scalar field response on such background analytically and non-perturbatively in the hair parameter, and we obtain how the pole structure gets affected by the presence of a black hole hair, relative to that of the usual AdS black hole geometry. The setup we consider is a massive 3D gravity theory, which admits a one-parameter family deformation of BTZ solution and enables us to solve the problem analytically. The theory also admits an AdS$_3$ soliton which gives a family of vacua that can be constructed from the hairy black hole by means of a double Wick rotation. The spectrum of normal modes on the latter geometry can also be solved analytically; we study its properties in relation to those of the AdS$_3$ vacuum.
The final ringdown phase in a coalescence process is a valuable laboratory to test General Relativity and potentially constrain additional degrees of freedom in the gravitational sector. We introduce here an effective description for perturbations around spherically symmetric spacetimes in the context of scalar-tensor theories, which we apply to study quasi-normal modes for black holes with scalar hair. We derive the equations of motion governing the dynamics of both the polar and the axial modes in terms of the coefficients of the effective theory. Assuming the deviation of the background from Schwarzschild is small, we use the WKB method to introduce the notion of light ring expansion. This approximation is analogous to the slow-roll expansion used for inflation, and it allows us to express the quasinormal mode spectrum in terms of a small number of parameters. This work is a first step in describing, in a model independent way, how the scalar hair can affect the ringdown stage and leave signatures on the emitted gravitational wave signal. Potential signatures include the shifting of the quasi-normal spectrum, the breaking of isospectrality between polar and axial modes, and the existence of scalar radiation.
We consider scalar and spinorial perturbations on a background described by a $z=3$ three-dimensional Lifshitz black hole. We obtained the corresponding quasinormal modes which perfectly agree with the analytical result for the quasinormal frequency in the scalar case. The numerical results for the spinorial perturbations reinforce our conclusion on the stability of the model under these perturbations. We also calculate the area spectrum, which prove to be equally spaced, as an application of our results.
In this paper we aim to investigate the process of massless scalar wave scattering due to a self-dual black hole through the partial wave method. We calculate the phase shift analytically at the low energy limit and we show that the dominant term of the differential cross section at the small angle limit is modified by the presence of parameters related to the polymeric function and minimum area of a self-dual black hole. We also find that the result for the absorption cross section is given by the event horizon area of the self-dual black hole at the low frequency limit. We also show that, contrarily to the case of a Schwarzschild black hole, the differential scattering/absorption cross section of a self-dual black hole is nonzero at the zero mass limit. In addition, we verify these results by numerically solving the radial equation for arbitrary frequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا