Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models


Abstract in English

Attempts at constraining theories of late time accelerated expansion often assume broad priors for the parameters in their phenomenological description. Focusing on shift-symmetric scalar-tensor theories with standard gravitational wave speed, we show how a more careful analysis of their dynamical evolution leads to much narrower priors. In doing so, we propose a simple and accurate parametrisation of these theories, capturing the redshift dependence of the equation of state, $w(z)$, and the kinetic braiding parameter, $alpha_{rm B}(z)$, with only two parameters each, and derive their statistical distribution (a.k.a. theoretical priors) that fit the cosmology of the underlying model. We have considered t

Download