Thermodynamical description of the system created during high energy collision requires a proper thermodynamical framework to study the distribution of particles. In this work, we have attempted to explain the transverse momentum spectra of charged hadrons formed in $pp$ collision at different energies using the Pearson statistical framework. This formalism has been proved to nicely explain the spectra of particles produced in soft processes as well hard scattering processes in a consistent manner. For this analysis, we have used the highest available range of $p_T$ published by experiments to verify the applicability of Pearson statistical framework at large $p_T$.
We predict the shape of the transverse momentum p_T spectrum of Upsilon production. The distribution at low p_T is dominated by the region of small impact parameter b and may be computed reliably in perturbation theory. We resum to all orders in the strong coupling alpha_s the process-independent large logarithmic contributions that arise from initial-state gluon showers in the small p_T (< M_Upsilon) region. The cross section at large p_T is represented by the alpha_s^3 lowest-order non-vanishing perturbative contribution.
Analysis of transverse momentum distributions is a useful tool to understand the dynamics of relativistic particles produced in high energy collision. Finding a proper distribution function to approximate the spectra is a vastly developing area of research in particle physics. In this work, we have provided a detailed theoretical description of the application of the unified statistical framework in high energy physics. Here, the transverse momentum spectra of pion measured by experiment at RHIC and LHC are also investigated in the framework of relativistic statistical thermodynamics using unified distribution.
In the framework of the gluon-gluon fusion process for Higgs boson production there are two different prescriptions. They are given by the exact process where the gluons couple via top-quark loops to the Higgs boson and by the approximation where the top-quark mass $m_t$ is taken to infinity. In the latter case the coupling of the gluons to the Higgs boson is described by an effective Lagrangian. Both prescriptions have been used for the $2 to 2$ body reactions to make predictions for Higgs boson production at hadron colliders. In next-to-leading order only the effective Lagrangian approach has been used to compute the single particle inclusive distributions. The exact computation of the latter has not been done yet because the n-dimensional extensions of $2 to 3$ processes are not calculated and the two-loop virtual corrections are still missing. To remedy this we replace wherever possible the Born cross sections in the asymptotic top-quark mass limit by their exact analogues. These cross sections appear in the soft and virtual gluon contributions to the next-to-leading order distributions. This approximation is inspired by the fact that soft-plus-virtual gluons constitute the bulk of the higher order correction. Deviations from the asymptotic top-quark mass limit are discussed.
Transverse momentum spectra of identified particles produced in heavy-ion collisions at the Large Hadron Collider are described with relativistic fluid dynamics. We perform a systematic comparison of experimental data for pions, kaons and protons up to a transverse momentum of 3 GeV$/c$ with calculations using the FluiduM code package to solve the evolution equations of fluid dynamics, the TrENTo model to describe the initial state and the FastReso code to take resonance decays into account. Using data in five centrality classes at the center-of-mass collision energy per nucleon pair $sqrt{s_text{NN}}=2.76,text{TeV}$, we determine systematically the most likely parameters of our theoretical model including the shear and bulk viscosity to entropy ratios, the initialization time, initial density and freeze-out temperature through a global search and quantify their posterior probability. This is facilitated by the very efficient numerical implementation of FluiduM and FastReso. Based on the most likely model parameters we present predictions for the transverse momentum spectra of multi-strange hadrons as well as identified particle spectra from Pb-Pb collisions at $sqrt{s_text{NN}}=5.02,text{TeV}$.
Coupled-channel dynamics for scattering and production processes in partial-wave amplitudes is discussed from a perspective that emphasizes unitarity and analyticity. We elaborate on several methods that have driven to important results in hadron physics, either by themselves or in conjunction with effective field theory. We also develop and compare with the use of the Lippmann-Schwinger equation in near-threshold scattering. The final(initial)-state interactions are discussed in detail for the elastic and coupled-channel case. Emphasis has been put in the derivation and discussion of the methods presented, with some applications examined as important examples of their usage.