No Arabic abstract
Crowd-sourcing has become a promising way to build} a feature-based indoor positioning system that has lower labour and time costs. It can make full use of the widely deployed infrastructure as well as built-in sensors on mobile devices. One of the key challenges is to generate the reference feature map (RFM), a database used for localization, by {aligning crowd-sourced {trajectories according to associations embodied in the data. In order to facilitate the data fusion using crowd-sourced inertial sensors and radio signals, this paper proposes an approach to adaptively mining geometric information. This is the essential for generating spatial associations between trajectories when employing graph-based optimization methods. The core idea is to estimate the functional relationship to map the similarity/dissimilarity between radio signals to the physical space based on the relative positions obtained from inertial sensors and their associated radio signals. Namely, it is adaptable to different modalities of data and can be implemented in a self-supervised way. We verify the generality of the proposed approach through comprehensive experimental analysis: i) qualitatively comparing the estimation of geometric mapping models and the alignment of crowd-sourced trajectories; ii) quantitatively evaluating the positioning performance. The 68% of the positioning error is less than 4.7 $mathrm{m}$ using crowd-sourced RFM, which is on a par with manually collected RFM, in a multi-storey shopping mall, which covers more than 10, 000 $ mathrm{m}^2 $.
Recently, in the context of covariance matrix estimation, in order to improve as well as to regularize the performance of the Tylers estimator [1] also called the Fixed-Point Estimator (FPE) [2], a shrinkage fixed-point estimator has been introduced in [3]. First, this work extends the results of [3,4] by giving the general solution of the shrinkage fixed-point algorithm. Secondly, by analyzing this solution, called the generalized robust shrinkage estimator, we prove that this solution converges to a unique solution when the shrinkage parameter $beta$ (losing factor) tends to 0. This solution is exactly the FPE with the trace of its inverse equal to the dimension of the problem. This general result allows one to give another interpretation of the FPE and more generally, on the Maximum Likelihood approach for covariance matrix estimation when constraints are added. Then, some simulations illustrate our theoretical results as well as the way to choose an optimal shrinkage factor. Finally, this work is applied to a Space-Time Adaptive Processing (STAP) detection problem on real STAP data.
We study the problem of learning a range of vision-based manipulation tasks from a large offline dataset of robot interaction. In order to accomplish this, humans need easy and effective ways of specifying tasks to the robot. Goal images are one popular form of task specification, as they are already grounded in the robots observation space. However, goal images also have a number of drawbacks: they are inconvenient for humans to provide, they can over-specify the desired behavior leading to a sparse reward signal, or under-specify task information in the case of non-goal reaching tasks. Natural language provides a convenient and flexible alternative for task specification, but comes with the challenge of grounding language in the robots observation space. To scalably learn this grounding we propose to leverage offline robot datasets (including highly sub-optimal, autonomously collected data) with crowd-sourced natural language labels. With this data, we learn a simple classifier which predicts if a change in state completes a language instruction. This provides a language-conditioned reward function that can then be used for offline multi-task RL. In our experiments, we find that on language-conditioned manipulation tasks our approach outperforms both goal-image specifications and language conditioned imitation techniques by more than 25%, and is able to perform visuomotor tasks from natural language, such as open the right drawer and move the stapler, on a Franka Emika Panda robot.
Mosquitoes are the only known vector of malaria, which leads to hundreds of thousands of deaths each year. Understanding the number and location of potential mosquito vectors is of paramount importance to aid the reduction of malaria transmission cases. In recent years, deep learning has become widely used for bioacoustic classification tasks. In order to enable further research applications in this field, we release a new dataset of mosquito audio recordings. With over a thousand contributors, we obtained 195,434 labels of two second duration, of which approximately 10 percent signify mosquito events. We present an example use of the dataset, in which we train a convolutional neural network on log-Mel features, showcasing the information content of the labels. We hope this will become a vital resource for those researching all aspects of malaria, and add to the existing audio datasets for bioacoustic detection and signal processing.
Estimates of road grade/slope can add another dimension of information to existing 2D digital road maps. Integration of road grade information will widen the scope of digital maps applications, which is primarily used for navigation, by enabling driving safety and efficiency applications such as Advanced Driver Assistance Systems (ADAS), eco-driving, etc. The huge scale and dynamic nature of road networks make sensing road grade a challenging task. Traditional methods oftentimes suffer from limited scalability and update frequency, as well as poor sensing accuracy. To overcome these problems, we propose a cost-effective and scalable road grade estimation framework using sensor data from smartphones. Based on our understanding of the error characteristics of smartphone sensors, we intelligently combine data from accelerometer, gyroscope and vehicle speed data from OBD-II/smartphones GPS to estimate road grade. To improve accuracy and robustness of the system, the estimations of road grade from multiple sources/vehicles are crowd-sourced to compensate for the effects of varying quality of sensor data from different sources. Extensive experimental evaluation on a test route of ~9km demonstrates the superior performance of our proposed method, achieving $5times$ improvement on road grade estimation accuracy over baselines, with 90% of errors below 0.3$^circ$.
Vaccine safety is a concerning problem of the public, and many signal detecting methods have been developed to identify relative risks between vaccines and adverse events (AEs). Those methods usually focus on individual AEs, where the randomness of data is high. The results often turn out to be inaccurate and lack of clinical meaning. The AE ontology contains information about biological similarity of AEs. Based on this, we extend the concept of relative risks (RRs) to AE group level, which allows the possibility of more accurate and meaningful estimation by utilizing data from the whole group. In this paper, we propose the method zGPS.AO (Zero Inflated Gamma Poisson Shrinker with AE ontology) based on the zero inflated negative binomial distribution. This model has two purples: a regression model estimating group level RRs, and a empirical bayes framework to evaluate AE level RRs. The regression part can handle both excess zeros and over dispersion in the data, and the empirical method borrows information from both group level and AE level to reduce data noise and stabilize the AE level result. We have demonstrate the unbiaseness and low variance features of our model with simulated data, and obtained meaningful results coherent with previous studies on the VAERS (Vaccine Adverse Event Reporting System) database. The proposed methods are implemented in the R package zGPS.AO, which can be installed from the Comprehensive R Archive Network, CRAN. The results on VAERS data are visualized using the interactive web app Rshiny.