Gyroscopes are widely used in various field. The instability of the low-cost gyroscopes makes them need to be calibrated on every boot. To meet the requirement of frequency calibration, finding an efficient in-field calibration method is essential. This paper proposes a fast calibration method that does not require any external equipment. We use the manual rotation angle as a calibration reference and linearize the calibration model. On the basis of this model, a G-optimal experimental design scheme is proposed, which can get enough calibration information with the least number of experiments. The simulations indicate that the calibration error is relatively low, and the results are unbiased. We empirically validate the effectiveness of the proposed method on two commonly used low-cost gyroscope and achieve real-time calibration on a low-energy microcontroller. We validate the proposed method by comparing the above method with the conventional turntable method. The experiment result shows that the error between these two methods is less than $pm3 times 10^{-2}$ and the calibration process takes less than 30 seconds. This method might have a practical implication for low-cost gyroscope calibration.