No Arabic abstract
Searches for $CP$ violation in the two-body decays $D_{(s)}^{+}rightarrow h^{+}pi^{0}$ and $D_{(s)}^{+} rightarrow h^{+}eta$ (where $h^{+}$ denotes a $pi^{+}$ or $K^{+}$ meson) are performed using $pp$ collision data collected by the LHCb experiment corresponding to either 9 fb$^{-1}$ or 6 fb$^{-1}$ of integrated luminosity. The $pi^{0}$ and $eta$ mesons are reconstructed using the $e^{+}e^{-}gamma$ final state, which can proceed as three-body decays $pi^{0}rightarrow e^{+}e^{-}gamma$ and $eta rightarrow e^{+}e^{-}gamma$, or via the two-body decays $pi^{0}rightarrow gammagamma$ and $etarightarrowgammagamma$ followed by a photon conversion. The measurements are made relative to the control modes $D_{(s)}^{+}rightarrow K_{S}^{0} h^{+}$ to cancel the production and detection asymmetries. The $CP$ asymmetries are measured to be begin{align} mathcal{A}_{CP}(D^{+}rightarrow pi^{+}pi^{0}) &= (-1.3 pm 0.9 pm 0.6 )%, end{align} begin{align} mathcal{A}_{CP}(D^{+}rightarrow K^{+}pi^{0}) &= (-3.2 pm 4.7 pm 2.1 )%, end{align} begin{align} mathcal{A}_{CP}(D^{+}rightarrow pi^{+}eta) &= (-0.2 pm 0.8 pm 0.4 )%, end{align} begin{align} mathcal{A}_{CP}(D^{+}rightarrow K^{+}eta) &= (-6 pm 10 pm 4 )%, end{align} begin{align} mathcal{A}_{CP}(D_{s}^{+}rightarrow K^{+}pi^{0}) &= (-0.8 pm 3.9 pm 1.2 )%, end{align} begin{align} mathcal{A}_{CP}(D_{s}^{+}rightarrow pi^{+}eta) &= (0.8 pm 0.7 pm 0.5 )%, end{align} begin{align} mathcal{A}_{CP}(D_{s}^{+}rightarrow K^{+}eta) &= (0.9 pm 3.7 pm 1.1 )%, end{align} where the first uncertainties are statistical and the second systematic. These results are consistent with no $CP$ violation and mostly constitute the most precise measurements of $mathcal{A}_{CP}$ in these decay modes to date.
We present the first amplitude analysis of the decay $D^{+}_{s} rightarrow pi^{+}pi^{0}eta$. We use an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 3.19~${mbox{,fb}^{-1}}$ collected with the BESIII detector at a center-of-mass energy of $4.178$ GeV. We observe for the first time the pure $W$-annihilation decays $D_{s}^{+} rightarrow a_{0}(980)^{+}pi^{0}$ and $D_{s}^{+} rightarrow a_{0}(980)^{0}pi^{+}$. We measure the absolute branching fractions $mathcal{B}(D_{s}^{+} rightarrow a_{0}(980)^{+(0)}pi^{0^(+)}, a_{0}(980)^{+(0)} to pi^{+(0)}eta) = (1.46pm0.15_{{rm stat.}}pm0.23_{{rm sys.}})$%, which is larger than the branching fractions of other measured pure $W$-annihilation decays by at least one order of magnitude. In addition, we measure the branching fraction of $D_{s}^{+} rightarrow pi^{+}pi^{0}eta$ with significantly improved precision.
The branching fraction of the decay $B_{s}^{0} rightarrow D_{s}^{(*)+}D_{s}^{(*)-}$ is measured using $pp$ collision data corresponding to an integrated luminosity of $1.0fb^{-1}$, collected using the LHCb detector at a centre-of-mass energy of $7$TeV. It is found to be begin{align*} {mathcal{B}}(B_{s}^{0}rightarrow~D_{s}^{(*)+}D_{s}^{(*)-}) = (3.05 pm 0.10 pm 0.20 pm 0.34)%, end{align*} where the uncertainties are statistical, systematic, and due to the normalisation channel, respectively. The branching fractions of the individual decays corresponding to the presence of one or two $D^{*pm}_{s}$ are also measured. The individual branching fractions are found to be begin{align*} {mathcal{B}}(B_{s}^{0}rightarrow~D_{s}^{*pm}D_{s}^{mp}) = (1.35 pm 0.06 pm 0.09 pm 0.15)%, ewline{mathcal{B}}(B_{s}^{0}rightarrow~D_{s}^{*+}D_{s}^{*-}) = (1.27 pm 0.08 pm 0.10 pm 0.14)%. end{align*} All three results are the most precise determinations to date.
Using an $e^{+}e^{-}$ annihilation data sample corresponding to an integrated luminosity of $3.19~mathrm{fb}^{-1}$ and collected at a center-of-mass energy $sqrt{s} = 4.178~mathrm{GeV}$ with the BESIII detector, we measure the absolute branching fractions $mathcal{B}(D_{s}^{+} rightarrow K_{S}^{0}K^{+}) = (1.425pm0.038_{rm stat.}pm0.031_{rm syst.})%$ and $mathcal{B}(D_{s}^{+} rightarrow K_{L}^{0}K^{+}) =(1.485pm0.039_{rm stat.}pm0.046_{rm syst.})%$. The branching fraction of $D_{s}^{+} rightarrow K_{S}^{0}K^{+}$ is compatible with the world average and that of $D_{s}^{+} rightarrow K_{L}^{0}K^{+}$ is measured for the first time. We present the first measurement of the $K_{S}^{0}$-$K_{L}^{0}$ asymmetry in the decays $D_{s}^{+} rightarrow K_{S,L}^{0}K^{+}$, and $R(D_{s}^{+} rightarrow K_{S,L}^{0}K^{+})=frac{mathcal{B}(D_{s}^{+} rightarrow K_{S}^{0}K^{+}) -mathcal{B}(D_{s}^{+} rightarrow K_{L}^{0}K^{+})}{mathcal{B}(D_{s}^{+} rightarrow K_{S}^{0}K^{+}) +mathcal{B}(D_{s}^{+} rightarrow K_{L}^{0}K^{+})}= (-2.1pm1.9_{rm stat.}pm1.6_{rm syst.})%$. In addition, we measure the direct $CP$ asymmetries $A_{rm CP}(D_{s}^{pm} rightarrow K_{S}^{0}K^{pm}) = (0.6pm2.8_{rm stat.}pm0.6_{rm syst.})%$ and $A_{rm CP}(D_{s}^{pm} rightarrow K_{L}^{0}K^{pm}) = (-1.1pm2.6_{rm stat.}pm0.6_{rm syst.})%$.
We study $D_{s}^{+}$ decays to final states involving the $eta$ with a 482$,$pb$^{-1}$ data sample collected at $sqrt{s}$ = 4.009$,$GeV with the mbox{BESIII} detector at the BEPCII collider. We measure the branching fractions $mathcal{B}(D^+_{s}rightarrow etaX)$ = (8.8$pm$1.8$pm$0.5)$%$ and $mathcal{B}(D_{s}^{+}rightarrow etarho^{+})$ = ($5.8pm1.4pm0.4$)$%$ where the first uncertainty is statistical and the second is systematic. In addition, we estimate an upper limit on the non-resonant branching ratio $mathcal{B}(D_{s}^{+}rightarrow etapi^+pi^0)<5.1%$ at the 90$%$ confidence level. Our results are consistent with CLEOs recent measurements and help to resolve the disagreement between the theoretical prediction and CLEOs previous measurement of $mathcal{B}(D_{s}^{+}rightarrow etarho^{+})$.
We present a measurement of the $CP$-violating weak mixing phase $phi_s$ using the decay $bar{B}^{0}_{s}to D_{s}^{+}D_{s}^{-}$ in a data sample corresponding to $3.0$ fb$^{-1}$ of integrated luminosity collected with the LHCb detector in $pp$ collisions at centre-of-mass energies of 7 and 8 TeV. An analysis of the time evolution of the system, which does not constrain $|lambda|=1$ to allow for the presence of $CP$ violation in decay, yields $phi_s = 0.02 pm 0.17$ (stat) $pm 0.02$ (syst) rad, $|lambda| = 0.91^{+0.18}_{-0.15}$ (stat) $pm0.02$ (syst). This result is consistent with the Standard Model expectation.