DNA Supercoiling Drives a Transition between Collective Modes of Gene Synthesis


Abstract in English

Recent experiments showed that multiple copies of the molecular machine RNA polymerase (RNAP) can efficiently synthesize mRNA collectively in the active state of the promoter. However, environmentally-induced promoter repression results in long-distance antagonistic interactions that drastically reduce the speed of RNAPs and cause a quick arrest of mRNA synthesis. The mechanism underlying this transition between cooperative and antagonistic dynamics remains poorly understood. In this Letter, we introduce a continuum deterministic model for the translocation of RNAPs, where the speed of an RNAP is coupled to the local DNA supercoiling as well as the density of RNAPs on the gene. We assume that torsional stress experienced by individual RNAPs is exacerbated by high RNAP density on the gene and that transcription factors act as physical barriers to the diffusion of DNA supercoils. We show that this minimal model exhibits two transcription modes mediated by the torsional stress: a fluid mode when the promoter is active and a torsionally stressed mode when the promoter is repressed, in quantitative agreement with experimentally observed dynamics of co-transcribing RNAPs. Our work provides an important step towards understanding the collective dynamics of molecular machines involved in gene expression.

Download