In continuous-time system identification, the intersample behavior of the input signal is known to play a crucial role in the performance of estimation methods. One common input behavior assumption is that the spectrum of the input is band-limited. The sinc interpolation property of these input signals yields equivalent discrete-time representations that are non-causal. This observation, often overlooked in the literature, is exploited in this work to study non-parametric frequency response estimators of linear continuous-time systems. We study the properties of non-causal least-square estimators for continuous-time system identification, and propose a kernel-based non-causal regularized least-squares approach for estimating the band-limited equivalent impulse response. The proposed methods are tested via extensive numerical simulations.