Do you want to publish a course? Click here

Critical properties of the prethermal Floquet Time Crystal

191   0   0.0 ( 0 )
 Added by Aditi Mitra
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The critical properties characterizing the formation of the Floquet time crystal in the prethermal phase are investigated analytically in the periodically driven $O(N)$ model. In particular, we focus on the critical line separating the trivial phase with period synchronized dynamics and absence of long-range spatial order from the non-trivial phase where long-range spatial order is accompanied by period-doubling dynamics. In the vicinity of the critical line, with a combination of dimensional expansion and exact solution for $Ntoinfty$, we determine the exponent $ u$ that characterizes the divergence of the spatial correlation length of the equal-time correlation functions, the exponent $beta$ characterizing the growth of the amplitude of the order-parameter, as well as the initial-slip exponent $theta$ of the aging dynamics when a quench is performed from deep in the trivial phase to the critical line. The exponents $ u, beta, theta$ are found to be identical to those in the absence of the drive. In addition, the functional form of the aging is found to depend on whether the system is probed at times that are small or large compared to the drive period. The spatial structure of the two-point correlation functions, obtained as a linear response to a perturbing potential in the vicinity of the critical line, is found to show algebraic decays that are longer ranged than in the absence of a drive, and besides being period-doubled, are also found to oscillate in space at the wave-vector $omega/(2 v)$, $v$ being the velocity of the quasiparticles, and $omega$ being the drive frequency.



rate research

Read More

The periodically driven O(N) model is studied near the critical line separating a disordered paramagnetic phase from a period doubled phase, the latter being an example of a Floquet time crystal. The time evolution of one-point and two-point correlation functions are obtained within the Gaussian approximation and perturbatively in the drive amplitude. The correlations are found to show not only period doubling, but also power-law decays at large spatial distances. These features are compared with the undriven O(N) model, in the vicinity of the paramagnetic-ferromagnetic critical point. The algebraic decays in space are found to be qualitatively different in the driven and the undriven cases. In particular, the spatio-temporal order of the Floquet time crystal leads to position-momentum and momentum-momentum correlation functions which are more long-ranged in the driven than in the undriven model. The light-cone dynamics associated with the correlation functions is also qualitatively different as the critical line of the Floquet time crystal shows a light-cone with two distinct velocities, with the ratio of these two velocities scaling as the square-root of the dimensionless drive amplitude. The Floquet unitary, which describes the time evolution due to a complete cycle of the drive, is constructed for modes with small momenta compared to the drive frequency, but having a generic relationship with the square-root of the drive amplitude. At intermediate momenta, which are large compared to the square-root of the drive amplitude, the Floquet unitary is found to simply rotate the modes. On the other hand, at momenta which are small compared to the square-root of the drive amplitude, the Floquet unitary is found to primarily squeeze the modes, to an extent which increases upon increasing the wavelength of the modes, with a power-law dependence on it.
In this work we discuss the existence of time-translation symmetry breaking in a kicked infinite-range-interacting clean spin system described by the Lipkin-Meshkov-Glick model. This Floquet time crystal is robust under perturbations of the kicking protocol, its existence being intimately linked to the underlying $mathbb{Z}_2$ symmetry breaking of the time-independent model. We show that the model being infinite-range and having an extensive amount of symmetry breaking eigenstates is essential for having the time-crystal behaviour. In particular we discuss the properties of the Floquet spectrum, and show the existence of doublets of Floquet states which are respectively even and odd superposition of symmetry broken states and have quasi-energies differing of half the driving frequencies, a key essence of Floquet time crystals. Remarkably, the stability of the time-crystal phase can be directly analysed in the limit of infinite size, discussing the properties of the corresponding classical phase space. Through a detailed analysis of the robustness of the time crystal to various perturbations we are able to map the corresponding phase diagram. We finally discuss the possibility of an experimental implementation by means of trapped ions.
We investigate the conditions under which periodically driven quantum systems subject to dissipation exhibit a stable subharmonic response. Noting that coupling to a bath introduces not only cooling but also noise, we point out that a system subject to the latter for the entire cycle tends to lose coherence of the subharmonic oscillations, and thereby the long-time temporal symmetry breaking. We provide an example of a short-ranged two-dimensional system which does not suffer from this and therefore displays persistent subharmonic oscillations stabilised by the dissipation. We also show that this is fundamentally different from the disordered DTC previously found in closed systems, both conceptually and in its phenomenology. The framework we develop here clarifies how fully connected models constitute a special case where subharmonic oscillations are stable in the thermodynamic limit.
We show that homogeneous lattice gauge theories can realize nonequilibrium quantum phases with long-range spatiotemporal order protected by gauge invariance instead of disorder. We study a kicked $mathbb{Z}_2$-Higgs gauge theory and find that it breaks the discrete temporal symmetry by a period doubling. In a limit solvable by Jordan-Wigner analysis we extensively study the time-crystal properties for large systems and further find that the spatiotemporal order is robust under the addition of a solvability-breaking perturbation preserving the $mathbb{Z}_2$ gauge symmetry. The protecting mechanism for the nonequilibrium order relies on the Hilbert space structure of lattice gauge theories, so that our results can be directly extended to other models with discrete gauge symmetries.
Following the recent realisation that periodically driven quantum matter can support new types of spatiotemporal order, now known as discrete time crystals (DTCs), we consider the stability of this phenomenon. Motivated by its conceptual importance as well as its experimental relevance we consider the effect of coupling to an external environment. We use this to argue, both analytically and numerically, that the DTC in disordered one-dimensional systems is destroyed at long times by any such natural coupling. This holds true even in the case where the coupling is such that the system is prevented from heating up by an external thermal bath.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا