Do you want to publish a course? Click here

Knowledge-Guided Object Discovery with Acquired Deep Impressions

57   0   0.0 ( 0 )
 Added by Jinyang Yuan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a framework called Acquired Deep Impressions (ADI) which continuously learns knowledge of objects as impressions for compositional scene understanding. In this framework, the model first acquires knowledge from scene images containing a single object in a supervised manner, and then continues to learn from novel multi-object scene images which may contain objects that have not been seen before without any further supervision, under the guidance of the learned knowledge as humans do. By memorizing impressions of objects into parameters of neural networks and applying the generative replay strategy, the learned knowledge can be reused to generate images with pseudo-annotations and in turn assist the learning of novel scenes. The proposed ADI framework focuses on the acquisition and utilization of knowledge, and is complementary to existing deep generative models proposed for compositional scene representation. We adapt a base model to make it fall within the ADI framework and conduct experiments on two types of datasets. Empirical results suggest that the proposed framework is able to effectively utilize the acquired impressions and improve the scene decomposition performance.



rate research

Read More

Knowledge distillation has become one of the most important model compression techniques by distilling knowledge from larger teacher networks to smaller student ones. Although great success has been achieved by prior distillation methods via delicately designing various types of knowledge, they overlook the functional properties of neural networks, which makes the process of applying those techniques to new tasks unreliable and non-trivial. To alleviate such problem, in this paper, we initially leverage Lipschitz continuity to better represent the functional characteristic of neural networks and guide the knowledge distillation process. In particular, we propose a novel Lipschitz Continuity Guided Knowledge Distillation framework to faithfully distill knowledge by minimizing the distance between two neural networks Lipschitz constants, which enables teacher networks to better regularize student networks and improve the corresponding performance. We derive an explainable approximation algorithm with an explicit theoretical derivation to address the NP-hard problem of calculating the Lipschitz constant. Experimental results have shown that our method outperforms other benchmarks over several knowledge distillation tasks (e.g., classification, segmentation and object detection) on CIFAR-100, ImageNet, and PASCAL VOC datasets.
In most cases deep learning architectures are trained disregarding the amount of operations and energy consumption. However, some applications, like embedded systems, can be resource-constrained during inference. A popular approach to reduce the size of a deep learning architecture consists in distilling knowledge from a bigger network (teacher) to a smaller one (student). Directly training the student to mimic the teacher representation can be effective, but it requires that both share the same latent space dimensions. In this work, we focus instead on relative knowledge distillation (RKD), which considers the geometry of the respective latent spaces, allowing for dimension-agnostic transfer of knowledge. Specifically we introduce a graph-based RKD method, in which graphs are used to capture the geometry of latent spaces. Using classical computer vision benchmarks, we demonstrate the ability of the proposed method to efficiently distillate knowledge from the teacher to the student, leading to better accuracy for the same budget as compared to existing RKD alternatives.
Many AutoML problems involve optimizing discrete objects under a black-box reward. Neural-guided search provides a flexible means of searching these combinatorial spaces using an autoregressive recurrent neural network. A major benefit of this approach is that builds up objects sequentially--this provides an opportunity to incorporate domain knowledge into the search by directly modifying the logits emitted during sampling. In this work, we formalize a framework for incorporating such in situ priors and constraints into neural-guided search, and provide sufficient conditions for enforcing constraints. We integrate several priors and constraints from existing works into this framework, propose several new ones, and demonstrate their efficacy in informing the task of symbolic regression.
In this article, we introduce the ContentWise Impressions dataset, a collection of implicit interactions and impressions of movies and TV series from an Over-The-Top media service, which delivers its media contents over the Internet. The dataset is distinguished from other already available multimedia recommendation datasets by the availability of impressions, i.e., the recommendations shown to the user, its size, and by being open-source. We describe the data collection process, the preprocessing applied, its characteristics, and statistics when compared to other commonly used datasets. We also highlight several possible use cases and research questions that can benefit from the availability of user impressions in an open-source dataset. Furthermore, we release software tools to load and split the data, as well as examples of how to use both user interactions and impressions in several common recommendation algorithms.
Knowledge Transfer (KT) techniques tackle the problem of transferring the knowledge from a large and complex neural network into a smaller and faster one. However, existing KT methods are tailored towards classification tasks and they cannot be used efficiently for other representation learning tasks. In this paper a novel knowledge transfer technique, that is capable of training a student model that maintains the same amount of mutual information between the learned representation and a set of (possible unknown) labels as the teacher model, is proposed. Apart from outperforming existing KT techniques, the proposed method allows for overcoming several limitations of existing methods providing new insight into KT as well as novel KT applications, ranging from knowledge transfer from handcrafted feature extractors to {cross-modal} KT from the textual modality into the representation extracted from the visual modality of the data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا