An Experiment Study on Federated LearningTestbed


Abstract in English

While the Internet of Things (IoT) can benefit from machine learning by outsourcing model training on the cloud, user data exposure to an untrusted cloud service provider can pose threat to user privacy. Recently, federated learning is proposed as an approach for privacy-preserving machine learning (PPML) for the IoT, while its practicability remains unclear. This work presents the evaluation on the efficiency and privacy performance of a readily available federated learning framework based on PySyft, a Python library for distributed deep learning. It is observed that the training speed of the framework is significantly slower than of the centralized approach due to communication overhead. Meanwhile, the framework bears some vulnerability to potential man-in-the-middle attacks at the network level. The report serves as a starting point for PPML performance analysis and suggests the future direction for PPML framework development.

Download