Do you want to publish a course? Click here

Sequential End-to-end Network for Efficient Person Search

102   0   0.0 ( 0 )
 Added by Zhengjia Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Person search aims at jointly solving Person Detection and Person Re-identification (re-ID). Existing works have designed end-to-end networks based on Faster R-CNN. However, due to the parallel structure of Faster R-CNN, the extracted features come from the low-quality proposals generated by the Region Proposal Network, rather than the detected high-quality bounding boxes. Person search is a fine-grained task and such inferior features will significantly reduce re-ID performance. To address this issue, we propose a Sequential End-to-end Network (SeqNet) to extract superior features. In SeqNet, detection and re-ID are considered as a progressive process and tackled with two sub-networks sequentially. In addition, we design a robust Context Bipartite Graph Matching (CBGM) algorithm to effectively employ context information as an important complementary cue for person matching. Extensive experiments on two widely used person search benchmarks, CUHK-SYSU and PRW, have shown that our method achieves state-of-the-art results. Also, our model runs at 11.5 fps on a single GPU and can be integrated into the existing end-to-end framework easily.



rate research

Read More

Panoptic segmentation, which needs to assign a category label to each pixel and segment each object instance simultaneously, is a challenging topic. Traditionally, the existing approaches utilize two independent models without sharing features, which makes the pipeline inefficient to implement. In addition, a heuristic method is usually employed to merge the results. However, the overlapping relationship between object instances is difficult to determine without sufficient context information during the merging process. To address the problems, we propose a novel end-to-end network for panoptic segmentation, which can efficiently and effectively predict both the instance and stuff segmentation in a single network. Moreover, we introduce a novel spatial ranking module to deal with the occlusion problem between the predicted instances. Extensive experiments have been done to validate the performance of our proposed method and promising results have been achieved on the COCO Panoptic benchmark.
Recent advances in OCR have shown that an end-to-end (E2E) training pipeline that includes both detection and recognition leads to the best results. However, many existing methods focus primarily on Latin-alphabet languages, often even only case-insensitive English characters. In this paper, we propose an E2E approach, Multiplexed Multilingual Mask TextSpotter, that performs script identification at the word level and handles different scripts with different recognition heads, all while maintaining a unified loss that simultaneously optimizes script identification and multiple recognition heads. Experiments show that our method outperforms the single-head model with similar number of parameters in end-to-end recognition tasks, and achieves state-of-the-art results on MLT17 and MLT19 joint text detection and script identification benchmarks. We believe that our work is a step towards the end-to-end trainable and scalable multilingual multi-purpose OCR system. Our code and model will be released.
This paper proposes an end-to-end learning framework for multiview stereopsis. We term the network SurfaceNet. It takes a set of images and their corresponding camera parameters as input and directly infers the 3D model. The key advantage of the framework is that both photo-consistency as well geometric relations of the surface structure can be directly learned for the purpose of multiview stereopsis in an end-to-end fashion. SurfaceNet is a fully 3D convolutional network which is achieved by encoding the camera parameters together with the images in a 3D voxel representation. We evaluate SurfaceNet on the large-scale DTU benchmark.
This paper addresses the task of relative camera pose estimation from raw image pixels, by means of deep neural networks. The proposed RPNet network takes pairs of images as input and directly infers the relative poses, without the need of camera intrinsic/extrinsic. While state-of-the-art systems based on SIFT + RANSAC, are able to recover the translation vector only up to scale, RPNet is trained to produce the full translation vector, in an end-to-end way. Experimental results on the Cambridge Landmark dataset show very promising results regarding the recovery of the full translation vector. They also show that RPNet produces more accurate and more stable results than traditional approaches, especially for hard images (repetitive textures, textureless images, etc). To the best of our knowledge, RPNet is the first attempt to recover full translation vectors in relative pose estimation.
Purpose: Colorectal cancer (CRC) is the second most common cause of cancer mortality worldwide. Colonoscopy is a widely used technique for colon screening and polyp lesions diagnosis. Nevertheless, manual screening using colonoscopy suffers from a substantial miss rate of polyps and is an overwhelming burden for endoscopists. Computer-aided diagnosis (CAD) for polyp detection has the potential to reduce human error and human burden. However, current polyp detection methods based on object detection framework need many handcrafted pre-processing and post-processing operations or user guidance that require domain-specific knowledge. Methods: In this paper, we propose a convolution in transformer (COTR) network for end-to-end polyp detection. Motivated by the detection transformer (DETR), COTR is constituted by a CNN for feature extraction, transformer encoder layers interleaved with convolutional layers for feature encoding and recalibration, transformer decoder layers for object querying, and a feed-forward network for detection prediction. Considering the slow convergence of DETR, COTR embeds convolution layers into transformer encoder for feature reconstruction and convergence acceleration. Results: Experimental results on two public polyp datasets show that COTR achieved 91.49% precision, 82.69% sensitivity, and 86.87% F1-score on the ETIS-LARIB, and 91.67% precision, 93.54% sensitivity, and 92.60% F1-score on the CVC-ColonDB. Conclusion: This study proposed an end to end detection method based on detection transformer for colorectal polyp detection. Experimental results on ETIS-LARIB and CVC-ColonDB dataset demonstrated that the proposed model achieved comparable performance against state-of-the-art methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا