Do you want to publish a course? Click here

Monoidal categorification and quantum affine algebras II

94   0   0.0 ( 0 )
 Added by Masaki Kashiwara
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a new family of real simple modules over the quantum affine algebras, called the affine determinantial modules, which contains the Kirillov-Reshetikhin (KR)-modules as a special subfamily, and then prove T-systems among them which generalize the T-systems among KR-modules and unipotent quantum minors in the quantum unipotent coordinate algebras simultaneously. We develop new combinatorial tools: admissible chains of i-boxes which produce commuting families of affine determinantial modules, and box moves which describe the T-system in a combinatorial way. Using these results, we prove that various module categories over the quantum affine algebras provide monoidal categorifications of cluster algebras. As special cases, Hernandez-Leclerc categories provide monoidal categorifications of the cluster algebras for an arbitrary quantum affine algebra.



rate research

Read More

Let $U_q(mathfrak{g})$ be a quantum affine algebra of untwisted affine $ADE$ type, and $mathcal{C}_{mathfrak{g}}^0$ the Hernandez-Leclerc category of finite-dimensional $U_q(mathfrak{g})$-modules. For a suitable infinite sequence $widehat{w}_0= cdots s_{i_{-1}}s_{i_0}s_{i_1} cdots$ of simple reflections, we introduce subcategories $mathcal{C}_{mathfrak{g}}^{[a,b]}$ of $mathcal{C}_{mathfrak{g}}^0$ for all $a le b in mathbb{Z}sqcup{ pm infty }$. Associated with a certain chain $mathfrak{C}$ of intervals in $[a,b]$, we construct a real simple commuting family $M(mathfrak{C})$ in $mathcal{C}_{mathfrak{g}}^{[a,b]}$, which consists of Kirillov-Reshetikhin modules. The category $mathcal{C}_{mathfrak{g}}^{[a,b]}$ provides a monoidal categorification of the cluster algebra $K(mathcal{C}_{mathfrak{g}}^{[a,b]})$, whose set of initial cluster variables is $[M(mathfrak{C})]$. In particular, this result gives an affirmative answer to the monoidal categorification conjecture on $mathcal{C}_{mathfrak{g}}^-$ by Hernandez-Leclerc since it is $mathcal{C}_{mathfrak{g}}^{[-infty,0]}$, and is also applicable to $mathcal{C}_{mathfrak{g}}^0$ since it is $mathcal{C}_{mathfrak{g}}^{[-infty,infty]}$.
We introduce and investigate new invariants on the pair of modules $M$ and $N$ over quantum affine algebras $U_q(mathfrak{g})$ by analyzing their associated R-matrices. From new invariants, we provide a criterion for a monoidal category of finite-dimensional integrable $U_q(mathfrak{g})$-modules to become a monoidal categorification of a cluster algebra.
We study monoidal categorifications of certain monoidal subcategories $mathcal{C}_J$ of finite-dimensional modules over quantum affine algebras, whose cluster algebra structures coincide and arise from the category of finite-dimensional modules over quiver Hecke algebra of type A${}_infty$. In particular, when the quantum affine algebra is of type A or B, the subcategory coincides with the monoidal category $mathcal{C}_{mathfrak{g}}^0$ introduced by Hernandez-Leclerc. As a consequence, the modules corresponding to cluster monomials are real simple modules over quantum affine algebras.
We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring $A_q(mathfrak{n}(w))$, associated with a symmetric Kac-Moody algebra and its Weyl group element $w$, admits a monoidal categorification via the representations of symmetric Khovanov-Lauda- Rouquier algebras. In order to achieve this goal, we give a formulation of monoidal categorifications of quantum cluster algebras and provide a criterion for a monoidal category of finite-dimensional graded $R$-modules to become a monoidal categorification, where $R$ is a symmetric Khovanov-Lauda-Rouquier algebra. Roughly speaking, this criterion asserts that a quantum monoidal seed can be mutated successively in all the directions, once the first-step mutations are possible. Then, we show the existence of a quantum monoidal seed of $A_q(mathfrak{n}(w))$ which admits the first-step mutations in all the directions. As a consequence, we prove the conjecture that any cluster monomial is a member of the upper global basis up to a power of $q^{1/2}$. In the course of our investigation, we also give a proof of a conjecture of Leclerc on the product of upper global basis elements.
213 - Hongyan Guo 2021
In this paper, we explore a canonical connection between the algebra of $q$-difference operators $widetilde{V}_{q}$, affine Lie algebra and affine vertex algebras associated to certain subalgebra $mathcal{A}$ of the Lie algebra $mathfrak{gl}_{infty}$. We also introduce and study a category $mathcal{O}$ of $widetilde{V}_{q}$-modules. More precisely, we obtain a realization of $widetilde{V}_{q}$ as a covariant algebra of the affine Lie algebra $widehat{mathcal{A}^{*}}$, where $mathcal{A}^{*}$ is a 1-dimensional central extension of $mathcal{A}$. We prove that restricted $widetilde{V_{q}}$-modules of level $ell_{12}$ correspond to $mathbb{Z}$-equivariant $phi$-coordinated quasi-modules for the vertex algebra $V_{widetilde{mathcal{A}}}(ell_{12},0)$, where $widetilde{mathcal{A}}$ is a generalized affine Lie algebra of $mathcal{A}$. In the end, we show that objects in the category $mathcal{O}$ are restricted $widetilde{V_{q}}$-modules, and we classify simple modules in the category $mathcal{O}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا