$(G,chi_phi)$-equivariant $phi$-coordinated modules for vertex algebras


Abstract in English

To give a unified treatment on the association of Lie algebras and vertex algebras, we study $(G,chi_phi)$-equivariant $phi$-coordinated quasi modules for vertex algebras, where $G$ is a group with $chi_phi$ a linear character of $G$ and $phi$ is an associate of the one-dimensional additive formal group. The theory of $(G,chi_phi)$-equivariant $phi$-coordinated quasi modules for nonlocal vertex algebra is established in cite{JKLT}. In this paper, we concentrate on the context of vertex algebras. We establish several conceptual results, including a generalized commutator formula and a general construction of vertex algebras and their $(G,chi_phi)$-equivariant $phi$-coordinated quasi modules. Furthermore, for any conformal algebra $mathcal{C}$, we construct a class of Lie algebras $widehat{mathcal{C}}_phi[G]$ and prove that restricted $widehat{mathcal{C}}_phi[G]$-modules are exactly $(G,chi_phi)$-equivariant $phi$-coordinated quasi modules for the universal enveloping vertex algebra of $mathcal{C}$. As an application, we determine the $(G,chi_phi)$-equivariant $phi$-coordinated quasi modules for affine and Virasoro vertex algebras.

Download