Do you want to publish a course? Click here

Probabilistic Simplex Component Analysis

98   0   0.0 ( 0 )
 Added by Wing-Kin Ma
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This study presents PRISM, a probabilistic simplex component analysis approach to identifying the vertices of a data-circumscribing simplex from data. The problem has a rich variety of applications, the most notable being hyperspectral unmixing in remote sensing and non-negative matrix factorization in machine learning. PRISM uses a simple probabilistic model, namely, uniform simplex data distribution and additive Gaussian noise, and it carries out inference by maximum likelihood. The inference model is sound in the sense that the vertices are provably identifiable under some assumptions, and it suggests that PRISM can be effective in combating noise when the number of data points is large. PRISM has strong, but hidden, relationships with simplex volume minimization, a powerful geometric approach for the same problem. We study these fundamental aspects, and we also consider algorithmic schemes based on importance sampling and variational inference. In particular, the variational inference scheme is shown to resemble a matrix factorization problem with a special regularizer, which draws an interesting connection to the matrix factorization approach. Numerical results are provided to demonstrate the potential of PRISM.



rate research

Read More

Principal Component Analysis (PCA) is a common multivariate statistical analysis method, and Probabilistic Principal Component Analysis (PPCA) is its probabilistic reformulation under the framework of Gaussian latent variable model. To improve the robustness of PPCA, it has been proposed to change the underlying Gaussian distributions to multivariate $t$-distributions. Based on the representation of $t$-distribution as a scale mixture of Gaussians, a hierarchical model is used for implementation. However, although the robust PPCA methods work reasonably well for some simulation studies and real data, the hierarchical model implemented does not yield the equivalent interpretation. In this paper, we present a set of equivalent relationships between those models, and discuss the performance of robust PPCA methods using different multivariate $t$-distributed structures through several simulation studies. In doing so, we clarify a current misrepresentation in the literature, and make connections between a set of hierarchical models for robust PPCA.
Unsupervised learning makes manifest the underlying structure of data without curated training and specific problem definitions. However, the inference of relationships between data points is frustrated by the `curse of dimensionality in high-dimensions. Inspired by replica theory from statistical mechanics, we consider replicas of the system to tune the dimensionality and take the limit as the number of replicas goes to zero. The result is the intensive embedding, which is not only isometric (preserving local distances) but allows global structure to be more transparently visualized. We develop the Intensive Principal Component Analysis (InPCA) and demonstrate clear improvements in visualizations of the Ising model of magnetic spins, a neural network, and the dark energy cold dark matter ({Lambda}CDM) model as applied to the Cosmic Microwave Background.
In audio signal processing, probabilistic time-frequency models have many benefits over their non-probabilistic counterparts. They adapt to the incoming signal, quantify uncertainty, and measure correlation between the signals amplitude and phase information, making time domain resynthesis straightforward. However, these models are still not widely used since they come at a high computational cost, and because they are formulated in such a way that it can be difficult to interpret all the modelling assumptions. By showing their equivalence to Spectral Mixture Gaussian processes, we illuminate the underlying model assumptions and provide a general framework for constructing more complex models that better approximate real-world signals. Our interpretation makes it intuitive to inspect, compare, and alter the models since all prior knowledge is encoded in the Gaussian process kernel functions. We utilise a state space representation to perform efficient inference via Kalman smoothing, and we demonstrate how our interpretation allows for efficient parameter learning in the frequency domain.
We consider the problem of principal component analysis from a data matrix where the entries of each column have undergone some unknown permutation, termed Unlabeled Principal Component Analysis (UPCA). Using algebraic geometry, we establish that for generic enough data, and up to a permutation of the coordinates of the ambient space, there is a unique subspace of minimal dimension that explains the data. We show that a permutation-invariant system of polynomial equations has finitely many solutions, with each solution corresponding to a row permutation of the ground-truth data matrix. Allowing for missing entries on top of permutations leads to the problem of unlabeled matrix completion, for which we give theoretical results of similar flavor. We also propose a two-stage algorithmic pipeline for UPCA suitable for the practically relevant case where only a fraction of the data has been permuted. Stage-I of this pipeline employs robust-PCA methods to estimate the ground-truth column-space. Equipped with the column-space, stage-II applies methods for linear regression without correspondences to restore the permuted data. A computational study reveals encouraging findings, including the ability of UPCA to handle face images from the Extended Yale-B database with arbitrarily permuted patches of arbitrary size in $0.3$ seconds on a standard desktop computer.
Objective: Mixtures of temporally nonstationary signals are very common in biomedical applications. The nonstationarity of the source signals can be used as a discriminative property for signal separation. Herein, a semi-blind source separation algorithm is proposed for the extraction of temporally nonstationary components from linear multichannel mixtures of signals and noises. Methods: A hypothesis test is proposed for the detection and fusion of temporally nonstationary events, by using ad hoc indexes for monitoring the first and second order statistics of the innovation process. As proof of concept, the general framework is customized and tested over noninvasive fetal cardiac recordings acquired from the maternal abdomen, over publicly available datasets, using two types of nonstationarity detectors: 1) a local power variations detector, and 2) a model-deviations detector using the innovation process properties of an extended Kalman filter. Results: The performance of the proposed method is assessed in presence of white and colored noise, in different signal-to-noise ratios. Conclusion and Significance: The proposed scheme is general and it can be used for the extraction of nonstationary events and sample deviations from a presumed model in multivariate data, which is a recurrent problem in many machine learning applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا