Lower Bound for the Simplicial Volume of Closed Manifolds Covered by $mathbb{H}^{2}timesmathbb{H}^{2}timesmathbb{H}^{2}$


Abstract in English

We estimate the upper bound for the $ell^{infty}$-norm of the volume form on $mathbb{H}^2timesmathbb{H}^2timesmathbb{H}^2$ seen as a class in $H_{c}^{6}(mathrm{PSL}_{2}mathbb{R}timesmathrm{PSL}_{2}mathbb{R}timesmathrm{PSL}_{2}mathbb{R};mathbb{R})$. This gives the lower bound for the simplicial volume of closed Riemennian manifolds covered by $mathbb{H}^{2}timesmathbb{H}^{2}timesmathbb{H}^{2}$. The proof of these facts yields an algorithm to compute the lower bound of closed Riemannian manifolds covered by $big(mathbb{H}^2big)^n$.

Download