Do you want to publish a course? Click here

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL

44   0   0.0 ( 0 )
 Added by Cl\\'ement Romac
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Training autonomous agents able to generalize to multiple tasks is a key target of Deep Reinforcement Learning (DRL) research. In parallel to improving DRL algorithms themselves, Automatic Curriculum Learning (ACL) study how teacher algorithms can train DRL agents more efficiently by adapting task selection to their evolving abilities. While multiple standard benchmarks exist to compare DRL agents, there is currently no such thing for ACL algorithms. Thus, comparing existing approaches is difficult, as too many experimental parameters differ from paper to paper. In this work, we identify several key challenges faced by ACL algorithms. Based on these, we present TeachMyAgent (TA), a benchmark of current ACL algorithms leveraging procedural task generation. It includes 1) challenge-specific unit-tests using variants of a procedural Box2D bipedal walker environment, and 2) a new procedural Parkour environment combining most ACL challenges, making it ideal for global performance assessment. We then use TeachMyAgent to conduct a comparative study of representative existing approaches, showcasing the competitiveness of some ACL algorithms that do not use expert knowledge. We also show that the Parkour environment remains an open problem. We open-source our environments, all studied ACL algorithms (collected from open-source code or re-implemented), and DRL students in a Python package available at https://github.com/flowersteam/TeachMyAgent.



rate research

Read More

In this report, we present a new reinforcement learning (RL) benchmark based on the Sonic the Hedgehog (TM) video game franchise. This benchmark is intended to measure the performance of transfer learning and few-shot learning algorithms in the RL domain. We also present and evaluate some baseline algorithms on the new benchmark.
Safety is an essential component for deploying reinforcement learning (RL) algorithms in real-world scenarios, and is critical during the learning process itself. A natural first approach toward safe RL is to manually specify constraints on the policys behavior. However, just as learning has enabled progress in large-scale development of AI systems, learning safety specifications may also be necessary to ensure safety in messy open-world environments where manual safety specifications cannot scale. Akin to how humans learn incrementally starting in child-safe environments, we propose to learn how to be safe in one set of tasks and environments, and then use that learned intuition to constrain future behaviors when learning new, modified tasks. We empirically study this form of safety-constrained transfer learning in three challenging domains: simulated navigation, quadruped locomotion, and dexterous in-hand manipulation. In comparison to standard deep RL techniques and prior approaches to safe RL, we find that our method enables the learning of new tasks and in new environments with both substantially fewer safety incidents, such as falling or dropping an object, and faster, more stable learning. This suggests a path forward not only for safer RL systems, but also for more effective RL systems.
Deep reinforcement learning (RL) has made groundbreaking advancements in robotics, data center management and other applications. Unfortunately, system-level bottlenecks in RL workloads are poorly understood; we observe fundamental structural differences in RL workloads that make them inherently less GPU-bound than supervised learning (SL). To explain where training time is spent in RL workloads, we propose RL-Scope, a cross-stack profiler that scopes low-level CPU/GPU resource usage to high-level algorithmic operations, and provides accurate insights by correcting for profiling overhead. Using RL-Scope, we survey RL workloads across its major dimensions including ML backend, RL algorithm, and simulator. For ML backends, we explain a $2.3times$ difference in runtime between equivalent PyTorch and TensorFlow algorithm implementations, and identify a bottleneck rooted in overly abstracted algorithm implementations. For RL algorithms and simulators, we show that on-policy algorithms are at least $3.5times$ more simulation-bound than off-policy algorithms. Finally, we profile a scale-up workload and demonstrate that GPU utilization metrics reported by commonly used tools dramatically inflate GPU usage, whereas RL-Scope reports true GPU-bound time. RL-Scope is an open-source tool available at https://github.com/UofT-EcoSystem/rlscope .
62 - Armin Runge 2020
The widespread use of Deep Learning (DL) applications in science and industry has created a large demand for efficient inference systems. This has resulted in a rapid increase of available Hardware Accelerators (HWAs) making comparison challenging and laborious. To address this, several DL hardware benchmarks have been proposed aiming at a comprehensive comparison for many models, tasks, and hardware platforms. Here, we present our DL hardware benchmark which has been specifically developed for inference on embedded HWAs and tasks required for autonomous driving. In addition to previous benchmarks, we propose a new granularity level to evaluate common submodules of DL models, a twofold benchmark procedure that accounts for hardware and model optimizations done by HWA manufacturers, and an extended set of performance indicators that can help to identify a mismatch between a HWA and the DL models used in our benchmark.
Deep reinforcement learning (RL) agents often fail to generalize to unseen scenarios, even when they are trained on many instances of semantically similar environments. Data augmentation has recently been shown to improve the sample efficiency and generalization of RL agents. However, different tasks tend to benefit from different kinds of data augmentation. In this paper, we compare three approaches for automatically finding an appropriate augmentation. These are combined with two novel regularization terms for the policy and value function, required to make the use of data augmentation theoretically sound for certain actor-critic algorithms. We evaluate our methods on the Procgen benchmark which consists of 16 procedurally-generated environments and show that it improves test performance by ~40% relative to standard RL algorithms. Our agent outperforms other baselines specifically designed to improve generalization in RL. In addition, we show that our agent learns policies and representations that are more robust to changes in the environment that do not affect the agent, such as the background. Our implementation is available at https://github.com/rraileanu/auto-drac.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا