Do you want to publish a course? Click here

Direct observation of terahertz frequency comb generationin difference-frequency quantum cascade lasers

386   0   0.0 ( 0 )
 Added by Luigi Consolino
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Terahertz quantum cascade laser sources based on intra-cavity difference frequency generation from mid-IR devices are an important asset for applications in rotational molecular spectroscopy and sensing, beingthe only electrically pumped device able to operate in the 0.6-6 THz range without the need of bulky andexpensive liquid helium cooling. Here we present comb operation obtained by intra-cavity mixing of adistributed feedback laser at {lambda} = 6.5 {mu}m and a Fabry-Perot device at around {lambda} = 6.9 {mu}m. The resultingultra-broadband THz emission extends from 1.8 to 3.3 THz, with a total output power of 8 {mu}W at 78K.The THz emission has been characterized by multi-heterodyne detection with a primary frequencystandard referenced THz comb, obtained by optical rectification of near infrared pulses. The down-converted beatnotes, simultaneously acquired, confirm an equally spaced THz emission down to 1 MHzaccuracy. In the next future this setup can be used for Fourier transform based evaluation of the phaserelation among the emitted THz modes, paving the way to room-temperature, compact and field-deployable metrological grade THz frequency combs.



rate research

Read More

We have developed terahertz frequency quantum cascade lasers that exploit a double-periodicity distributed feedback grating to control the emission frequency and the output beam direction independently. The spatial refractive index modulation of the gratings necessary to provide optical feedback at a fixed frequency and, simultaneously, a far-field emission pattern centered at controlled angles, was designed through use of an appropriate wavevector scattering model. Single mode THz emission at angles tuned by design between 0{deg} and 50{deg} was realized, leading to an original phase-matching approach, lithographically independent, for highly collimated THz QCLs.
Optical frequency comb synthesizers (FCs) [1] are laser sources covering a broad spectral range with a number of discrete, equally spaced and highly coherent frequency components, fully controlled through only two parameters: the frequency separation between adjacent modes and the carrier offset frequency. Providing a phase-coherent link between the optical and the microwave/radio-frequency regions [2], FCs have become groundbreaking tools for precision measurements[3,4]. Despite these inherent advantages, developing miniaturized comb sources across the whole infrared (IR), with an independent and simultaneous control of the two comb degrees of freedom at a metrological level, has not been possible, so far. Recently, promising results have been obtained with compact sources, namely diode-laser-pumped microresonators [5,6] and quantum cascade lasers (QCL-combs) [7,8]. While both these sources rely on four-wave mixing (FWM) to generate comb frequency patterns, QCL-combs benefit from a mm-scale miniaturized footprint, combined with an ad-hoc tailoring of the spectral emission in the 3-250 {mu}m range, by quantum engineering [9]. Here, we demonstrate full stabilization and control of the two key parameters of a QCL-comb against the primary frequency standard. Our technique, here applied to a far-IR emitter and open ended to other spectral windows, enables Hz-level narrowing of the individual comb modes, and metrological-grade tuning of their individual frequencies, which are simultaneously measured with an accuracy of 2x10^-12, limited by the frequency reference used. These fully-controlled, frequency-scalable, ultra-compact comb emitters promise to pervade an increasing number of mid- and far-IR applications, including quantum technologies, due to the quantum nature of the gain media [10].
We report a homogeneous quantum cascade laser (QCL) emitting at Terahertz (THz) frequencies, with a total spectral emission of about 0.6 THz centered around 3.3 THz, a current density dynamic range of Jdr=1.53, and a continuous wave output power of 7 mW. The analysis of the intermode beatnote unveils that the devised laser operates as optical frequency comb (FC) synthesizer over the whole laser operational regime, with up to 36 optically active laser modes delivering ~ 200 uW of optical power per comb tooth, a power level unreached so far in any THz QCL FC. A stable and narrow single beatnote, reaching a minimum linewidth of 500 Hz, is observed over a current density range of 240 A/cm2, and even across the negative differential resistance region. We further prove that the QCL frequency comb can be injection locked with moderate RF power at the intermode beatnote frequency, covering a locking range of 1.2 MHz. The demonstration of stable FC operation, in a QCL, over the full current density dynamic range, and without any external dispersion compensation mechanism, makes our proposed homogenous THz QCL an ideal tool for metrological application requiring mode-hop electrical tunability and a tight control of the frequency and phase jitter.
Microresonator-based soliton frequency combs - microcombs - have recently emerged to offer low-noise, photonic-chip sources for optical measurements. Owing to nonlinear-optical physics, microcombs can be built with various materials and tuned or stabilized with a consistent framework. Some applications require phase stabilization, including optical-frequency synthesis and measurements, optical-frequency division, and optical clocks. Partially stabilized microcombs can also benefit applications, such as oscillators, ranging, dual-comb spectroscopy, wavelength calibration, and optical communications. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency-comb sources important for studying comb-matter interactions with atoms and molecules. Here, we explore direct microcomb atomic spectroscopy, utilizing a cascaded, two-photon 1529-nm atomic transition of rubidium. Both the microcomb and the atomic vapor are implemented with planar fabrication techniques to support integration. By fine and simultaneous control of the repetition rate and carrier-envelope-offset frequency of the soliton microcomb, we obtain direct sub-Doppler and hyperfine spectroscopy of the $4^2D_{5/2}$ manifold. Moreover, the entire set of microcomb modes are stabilized to this atomic transition, yielding absolute optical-frequency fluctuations of the microcomb at the kilohertz-level over a few seconds and < 1 MHz day-to-day accuracy. Our work demonstrates atomic spectroscopy with microcombs and provides a rubidium-stabilized microcomb laser source, operating across the 1550 nm band for sensing, dimensional metrology, and communication.
We report on the engineering of broadband quantum cascade lasers (QCLs) emitting at Terahertz (THz) frequencies, which exploit a heterogeneous active region scheme and have a current density dynamic range (Jdr) of 3.2, significantly larger than the state of the art, over a 1.3 THz bandwidth. We demonstrate that the devised broadband lasers operate as THz optical frequency comb synthesizers in continuous wave, with a maximum optical output power of 4 mW (0.73 mW in the comb regime). Measurement of the intermode beatnote map reveals a clear dispersion-compensated frequency comb regime extending over a continuous 106 mA current range (current density dynamic range of 1.24), significantly larger than the state of the art reported under similar geometries, with a corresponding emission bandwidth of 1.05 THz ans a stable and narrow (4.15 KHz) beatnote detected with a signal-to-noise ratio of 34 dB. Analysis of the electrical and thermal beatnote tuning reveals a current-tuning coefficient ranging between 5 MHz/mA and 2.1 MHz/mA and a temperature-tuning coefficient of -4 MHz/K. The ability to tune the THz QCL combs over their full dynamic range by temperature and current paves the way for their use as powerful spectroscopy tool that can provide broad frequency coverage combined with high precision spectral accuracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا