Mass spectra of $NOmega$ dibaryons in the $^{3}S_1$ and $^{5}S_2$ channels


Abstract in English

We study the mass spectra of the $NOmega$ dibaryons in the $^{3}S_1$ and $^{5}S_2$ channels with $J^{P}=1^{+}$ and $2^{+}$ respectively, by using the method of QCD sum rules. We construct two dibaryon interpolating currents in the molecular picture and calculate their correlation functions and spectral densities up to dimension-16 condensates. Our results indicate that there may exist an $NOmega$ dibaryon bound state in the $^{5}S_2$ channel with a binding energy of about $21 mathrm{MeV}$. The masses of the $^{3}S_1$ $NOmega$ dibaryons with $J^{P}=1^{+}$ are predicted to be higher than the $NOmega$ and $LambdaXi$ thresholds, and thus can decay into these final states directly in S-wave. The $NOmega (^{5}S_2)$ dibaryon bound state can decay into the octet-octet final states $LambdaXi$ and $SigmaXi$ in D-wave via the quark rearrangement mechanism. The existence of these $NOmega$ dibaryons may be identified in the relativistic heavy-ion collision experiments in the future.

Download