Do you want to publish a course? Click here

Control of band structure of FeSe single crystals via biaxial strain

427   0   0.0 ( 0 )
 Added by Masamichi Nakajima
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We performed systematic transport measurements on FeSe single crystals with applying in-plane biaxial strain $varepsilon$ ranging from -0.96% to 0.23%. Biaxial strain was introduced by firmly gluing samples to various substrate materials with different thermal expansion. With increasing $varepsilon$, structural and superconducting transition temperatures monotonically increased and decreased, respectively. We analyzed magneto-transport results using a compensated three-carrier model. The evaluated densities of hole and electron carriers systematically changed with strain. This indicates that we succeeded in controlling the band structure of single-crystalline FeSe.



rate research

Read More

Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetotransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high $T_c$ superconductivity of FeSe systems.
We report flux free growth of superconducting FeSe single crystals by an easy and versatile high temperature melt and slow cooling method for first time. The room temperature XRD on the surface of the piece of such obtained crystals showed single 101 plane of Beta-FeSe tetragonal phase. The bulk powder XRD, being obtained by crushing the part of crystal chunk showed majority tetragonal and minority FeSe hexagonal crystalline phases. Detailed HRTEM images along with SAED (selected area electron diffraction) showed the abundance of both majority and minority FeSe phases. Both transport (RT) and magnetization (MT) exhibited superconductivity at below around 10K. Interestingly, the magnetization signal of these crystals is dominated by the magnetism of minority magnetic phase, and hence the isothermal magnetization (MH) at 4K was seen to be ferromagnetic (FM) like. Transport (R-T) measurements under magnetic field showed superconductivity onset at below 12K, and R = 0 (Tc) at 9K. Superconducting transition temperature (Tc) decreases with applied field to around 6K at 7Tesla, with dTc/dH of 0.4K/Tesla, giving rise to an Hc2 value of around 50 Tesla, 30 Tesla and 20 Tesla for Rn = 90, 50 and 10 percent respectively. FeSe single crystal activation energy is calculated from Thermally Activated Flux Flow (TAFF) model which is found to decreases with field.
The results of the comprehensive ultrasonic research of high quality single crystals of FeSe are presented. Absolute values of sound velocities and their temperature dependences were measured; elastic constants and Debye temperature were calculated. The elastic C11-C12 and C11 constants undergo significant softening under the structural tetra-ortho transformation. The significant influence of the superconducting transition on the velocity and attenuation of sound was revealed and the value of the superconducting energy gap was estimated.
72 - S.Lee , H.Mori , T.Masui 2001
Here we report the growth of sub-millimeter MgB2 single crystals of various shapes under high pressure in Mg-B-N system. Structure refinement using a single-crystal X-ray diffraction analysis gives lattice parameters a=3.0851(5) A and c=3.5201(5) A with small reliability factors (Rw =0.025, R=0.018), which enables us to analyze the Fourier and Fourier difference maps. The maps clearly show the B sp2 orbitals and covalency of the B-B bonds. The sharp superconducting transitions at Tc =38.1-38.3K were obtained in both magnetization (DTc =0.6K) and resistivity (DTc <0.3K) measurements. Resistivity measurements with magnetic fields applied parallel and perpendicular to the Mg and B sheets reveal the anisotropic nature of this compound, with upper critical field anisotropy ratio of about 2.7.
FeSe$_{1-x}$Te$_{x}$ superconductors manifest some intriguing electronic properties depending on the value of $x$. In FeSe single crystal, the nematic phase and Dirac band structure have been observed, while topological surface superconductivity with the Majorana bound state was found in the crystal of $x sim 0.55$. Therefore, the electronic properties of single crystals with $0 < x leq 0.5$ are crucial for probing the evolution of those intriguing properties as well as their relations. However, this study is still left blank due to the lack of single crystals because of phase separation. Here, we report the synthesis, magnetization, electronic transport properties, and hydrostatic pressure effect of FeSe$_{0.67}$Te$_{0.33}$ single crystals free of phase separation. A structural (nematic) transition is visible at $T_{s} = 39$ K, below which the resistivity exhibits a Fermi-liquid behavior. Analysis of upper critical fields suggests that spin-paramagnetic effect should be taken into account for both $H parallel c$ axis and $H parallel ab$ plane. A crossover from the low-$H$ quadratic to the high-$H$ quasi-linear behavior is observed in the magnetoresistance, signifying the possible existence of Dirac-cone state. Besides, the strong temperature dependence of Hall coefficient, violation of (modified) Kohlers rule, and two-band model analysis indicate the multiband effects in FeSe$_{0.67}$Te$_{0.33}$ single crystals. Hydrostatic pressure measurements reveal that $T_{s}$ is quickly suppressed with pressure while $T_{c}$ is monotonically increased up to 2.31 GPa, indicating the competition between nematicity and superconductivity. No signature of magnetic order that has been detected in FeSe$_{1-x}$S$_{x}$ is observed. Our findings fill up the blank of the knowledge on the basic properties of FeSe$_{1-x}$Te$_{x}$ system with low-Te concentrations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا